

https://doi.org/10.24271/garmian.scpas24

Applications of the Operator $_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}$; $q, f\theta$)

Rasha H. Jaber, Husam L. Saad

Department of Mathematics, College of Science, Basrah University, Basra, Iraq

Abstract

In this paper, we construct the q -exponential operator ${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}$. We use the operator ${}_{3}\phi_{2}$ to obtain an extension of Euler identities, Ramanujan's sum, q -Chu- Vanermonde summation formula and we give some other identities. Also we use the operator ${}_{3}\phi_{2}$ to get an extension of the Ramanujan's identity, the Askey beta integral, Ramanujan's beta integral and we give some other integrals formulas.

1-Introduction

In this paper we will use the standard notations for basic hypergeometric series given in [5], we assume that |q| < 1.

Definition 1.1. [5]. Let a be a complex variable. The q-shifted factorial is defined by

$$(a;q)_n = \begin{cases} 1, & \text{if } n = 0, \\ \prod_{k=0}^{n-1} (1 - aq^k), & \text{if } n = 1, 2, \dots. \end{cases}$$

define

We

$$(a;q)_{\infty} = \prod_{k=0}^{\infty} (1-aq^k).$$

The following notation is used for the multiple q-shifted factorials:

$$(a_1, a_2, \dots, a_m; q)_n = (a_1; q)_n (a_2; q)_n \cdots (a_m; q)_n, \qquad n = 0, 1, 2, \dots$$

$$a_1, a_2, \dots, a_m; q)_{\infty} = (a_1; q)_{\infty} (a_2; q)_{\infty} \dots (a_m; q)_{\infty}.$$

Definition 1.2 [5]. The generalized basic hypergeometric series is defined by

$${}_{r}\phi_{s}\binom{a_{1},a_{2},\cdots,a_{r}}{b_{1},b_{2},\cdots,b_{s}};q,x = \sum_{n=0}^{\infty} \frac{(a_{1},\ldots,a_{r};q)_{n}}{(q,b_{1},\ldots,b_{s};q)_{n}} \left[(-1)^{n}q^{\binom{n}{2}} \right]^{1+s-r} x^{n},$$

where $r, s \in \mathbb{N}$; $a_1, ..., a_r \in C$; $b_1, ..., b_s \in C \setminus \{q^{-k}, k \in N\}$ are assumed to be such that none of the denominator factors evaluate to zero. This series converges absolutely for all x if $r \leq s$ and for |x| < 1 if r = s + 1.

The case r = s + 1 is the most important class of series $s+1\phi_s\begin{pmatrix}a_1, a_2, \cdots, a_{s+1}\\b_1, b_2, \cdots, b_s \end{pmatrix} = \sum_{n=0}^{\infty} \frac{(a_1, \cdots, a_{s+1}; q)_n}{(q, b_1, \cdots, b_s; q)_n} x^n, |x| < 1.$

The general bilateral basic hypergeometric series is given by: ${}_{r}\psi_{s}\left(\begin{array}{c}a_{1},\cdots,a_{r}\\b_{1},b_{2},\cdots,b_{s}\end{array};q,x\right) = \sum_{n=0}^{\infty} \frac{(a_{1},\cdots,a_{r};q)_{n}}{(b_{1},\cdots,b_{s};q)_{n}}\left[(-1)^{n}q^{\binom{n}{2}}\right]^{s-r}x^{n}, |x| < 1.$

Ramanujan's sum

$${}_{1}\psi_{1}(a;b;q,x) = \sum_{n=0}^{\infty} \frac{(a;q)_{n}}{(b;q)_{n}} x^{n} = \frac{(q,b/a,ax,q/ax;q)_{\infty}}{(b,q/a,x,b/ax)_{\infty}}.$$
 (1.1)

Definition 1.3 [5]. For $n \in N$, the *q*-binomial coefficient is defined by

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{cases} \frac{(q;q)_n}{(q;q)_k (q;q)_{n-k}}, & \text{if } 0 \le k \le n; \\ 0, & \text{otherwise.} \end{cases}$$

In this paper, we will use the following identities ([5]):

$$(a;q)_n = \frac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}.$$
(1.2)

$$(aq^{-n};q)_n = (q/a;q)_n (-a/q)^n q^{-\binom{n}{2}}.$$
(1.3)

$$(a;q)_n = (q^{1-n}/a;q)_n (-a)^n q^{\binom{n}{2}}.$$
(1.4)

One of the most important identities is the Cauchy identity ([5])

$$\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} x^n = \frac{(ax;q)_{\infty}}{(x;q)_{\infty}}, \quad |x| < 1.$$
(1.5)

Euler found the following special case of Cauchy identity ([5]):

$$\sum_{\substack{n=0\\\infty\\\infty}}^{\infty} \frac{x^n}{(q;q)_n} = \frac{1}{(x;q)_{\infty}}, \quad |x| < 1.$$
(1.6)

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^n}{(q;q)_n} = (-x;q)_{\infty}.$$
(1.7)

Hein's q-Gauss summation formula is ([5])

$${}_{2}\phi_{1}\binom{a,b}{c};q,c/ab = \frac{(c/a,c/b;q)_{\infty}}{(c,c/ab;q)_{\infty}}.$$
(1.8)

The *q*-Chu-Vandermonde summation formula ([5]):

$${}_{2}\phi_{1}\left({q^{-n}, b \atop c}; q, q\right) = \frac{(c/b; q)_{n}}{(c; q)_{n}}b^{n}.$$
(1.9)

Definition 1.4 [1, 9]. The q-differential operator θ is defined by

$$\theta\{f(x)\} = \frac{f(q^{-1}x) - f(x)}{q^{-1}x}.$$
(1.10)

Definition 1.5 [9]. *The Leibniz rule for* θ *is*

SCPAS-2019

$$\theta^n\{f(x)\,g(x)\} = \sum_{k=0}^n \, {n \brack k} \, \theta^k\{f(x)\} \theta^{n-k}\{g(x\,q^{-k})\}. \tag{1.11}$$

The following identities are easy to prove:

Theorem 1.6 [4, 12]. Let θ be defined as in (1.10), then

$$\theta^k \{x^n\} = (-1)^k x^{n-k} q^k (q^{-n}; q)_k$$

$$\theta^{k} \{ (xt;q)_{\infty} \} = (-t)^{k} (xt;q)_{\infty} .$$

$$\theta^{k} \{ \frac{(xv;q)_{\infty}}{(xt;q)_{\infty}} \} = t^{k} q^{-\binom{k}{2}} (v/t;q)_{k} \frac{(xv;q)_{\infty}}{(xtq^{-k};q)_{\infty}}, \quad |xt| < 1.$$

Definition 1.7 [4]. The q-exponential operator $E(b\theta)$ is defined by

$$E(b\theta) = \sum_{n=0}^{\infty} \frac{(b\theta)^n q^{\binom{n}{2}}}{(q;q)_n}$$

Theorem 1.8 Let θ be defined as in (1.10), then

$$E(b\theta)\{(at;q)_{\infty}\} = (at,bt;q)_{\infty}.$$
$$E(b\theta)\{(as,at,;q)_{\infty}\} = \frac{(as,at,bs,bt;q)_{\infty}}{(abst/q;q)_{\infty}}.$$
(1.12)

Based on the *q*-Chu-Vandermonde summation formula (1.9), Zhang and Yang [13] considered the finite *q*-exponential operator $_{2}\mathcal{T}_{1}\left(\begin{matrix} q^{-N}, \mathbf{v} \\ w \end{matrix}; q, t\theta \right)$ with two parameters as follows:

Definition 1.9 [13]. The finite q-exponential operator $_{2}\mathcal{T}_{1}\left(\substack{q^{-N}, v \\ w}; q, t\theta\right)$ is defined by $_{2}\mathcal{T}_{1}\left(\substack{q^{-N}, v \\ w}; q, t\theta\right) = \sum_{n=0}^{N} \frac{(q^{-N}, v; q)_{n}}{(q, w; q)_{n}} (t\theta)^{n}.$ (1.13)

Zhang and Yang [13] proved the following result:

Theorem 1.10 [13]. Let
$$_{2}\mathcal{T}_{1}\left(\begin{matrix} q^{-N}, v \\ w \end{matrix}; q, t\theta \end{matrix}\right)$$
 be defined as in (1.13), then we have
 $_{2}\mathcal{T}_{1}\left(\begin{matrix} q^{-N}, v \\ w \end{matrix}; q, t\theta \end{matrix}\} \{(xb; q)_{\infty}\} = (xb; q)_{\infty} \ _{2}\psi_{1}\left(\begin{matrix} q^{-N}, v \\ w \end{matrix}; q, -tb \end{matrix}\}$

Inspired by the basic hypergeometric series $_{2}\phi_{1}$, Li and Tan [8] introduced the generalized q-exponential operator $\mathbb{E}\begin{bmatrix} u, v \\ w \end{bmatrix} q; t\theta$ with three parameters as follows:

Definition 1.11 [8]. The generalized q-exponential operator $\mathbb{E}\begin{bmatrix} u, v \\ w \end{bmatrix}$ is defined by

$$\mathbb{E}\begin{bmatrix}\boldsymbol{u},\boldsymbol{v}\\\boldsymbol{w}|\boldsymbol{q};t\boldsymbol{\theta}\end{bmatrix} = \sum_{n=0}^{\infty} \frac{(\boldsymbol{u},\boldsymbol{v};\boldsymbol{q})_n}{(\boldsymbol{q},\boldsymbol{w};\boldsymbol{q})_n} (t\boldsymbol{\theta})^n.$$
(1.14)

Li and Tan [8] proved the following result:

Theorem 1.12 [8]. Let $\mathbb{E}\begin{bmatrix} u, v \\ w \end{bmatrix}$ *is defined as in* (1.14), *then we have*

SCPAS-2019

$$\mathbb{E}\begin{bmatrix}\boldsymbol{u},\boldsymbol{v}\\w \mid q; \frac{w}{uv\theta}\end{bmatrix}\{x^n\} = x^n_{3}\phi_2\begin{pmatrix}q^{-N}, u, v\\w, 0\end{pmatrix}; q, -\frac{qw}{uvx}\end{pmatrix}.$$
$$\mathbb{E}\begin{bmatrix}\boldsymbol{u},\boldsymbol{v}\\w \mid q; t\theta\end{bmatrix}\{\frac{(xa;q)_{\infty}}{(xb;q)_{\infty}}\} = \frac{(xa;q)_{\infty}}{(xb;q)_{\infty}}_{3}\phi_2\begin{pmatrix}u, v, a/b\\w, q/xb\end{pmatrix}; q, ; q, -qt/x\end{pmatrix},$$
(1.15)

where θ acts on x.

Special Issue

Thomae [10, 11] Jackson [6, 7] introduced the *q*-integral

$$\int_{0}^{1} f(t) d_{q} t = (1 - q) \sum_{n=0}^{\infty} f(q^{n}) q^{n}$$

and Jackson gave the more general definition

$$\int_{a}^{b} f(t)d_{q}t = \int_{0}^{b} f(t)d_{q}t - \int_{0}^{a} f(t)d_{q}t,$$

where

$$\int_{0}^{a} f(t)d_{q}t = a(1-q)\sum_{n=0}^{\infty} f(aq^{n})q^{n}.$$

Jackson also defined an integral on $(0, \infty)$ by

$$\int_0^\infty f(t)d_qt = (1-q)\sum_{n=-\infty}^\infty f(q^n)q^n.$$

The bilateral q-integral is defined by

$$\int_{-\infty}^{\infty} f(t)d_qt = (1-q)\sum_{n=-\infty}^{\infty} \left[f(q^n) + f(-q^n)\right]q^n.$$

Askey beta integral is given by ([2]):

$$\int_{-\infty}^{\infty} \frac{(xt,yt;q)_{\infty}}{(-wt,ut;q)_{\infty}} d_q t = \frac{2(1-q)(q^2;q^2)_{\infty}^2(wu,q/wu,x/u,-x/w,y/u,-y/u;q)_{\infty}}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}(-xy/uwq;q)_{\infty}}.$$
 (1.16)

Ramanujan's identity (i) is given by ([3])

$$\int_{-\infty}^{\infty} \frac{e^{-x^2 + 2mx}}{(sq^{1/2}e^{2ikx}, tq^{1/2}e^{-2ikx}; q)_{\infty}} dx = \sqrt{\pi}e^{m^2} \frac{(-sqe^{2mki}, -tqe^{-2mki}; q)_{\infty}}{(stq; q)_{\infty}}.$$
 (1.17)

The Ramanujan's beta integral is given by

$$\int_{0}^{\infty} t^{x-1} \frac{(-yt;q)_{\infty}}{(t;q)_{\infty}} dt = \frac{\pi}{\sin(\pi x)} \frac{(q^{1-x},y;q)_{\infty}}{(q,yq^{-x};q)_{\infty}}.$$
 (1.18)

2. The q-Exponential Operator and its Operator Identities

In this section, based on the basic hypergeometric series $_{3}\phi_{2}$, we define a *q*-exponential operator with five parameters $_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}$ and obtain some its operator identities.

Definition 2.1. The q-exponential operator ${}_{3}\phi_{2}\begin{pmatrix}a, b, c\\d, e\end{pmatrix}$ is defined as follows:

$${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\\ \end{pmatrix};q,f\theta = \sum_{k=0}^{\infty} \frac{(a,b,c;q)_{k}}{(q,d,e;q)_{n}} (f\theta)^{k}.$$
(2.1)

Note that the finite q-exponential operator defined by Zhang and Yang [13] can be considered as special case of our operator for $a = q^{-N}$, b = v, d = w and c = e = 0. Also, the generalized q-exponential operator defined by Li and Tan in [8] can be considered as special case of our operator for a = u, b = v, c = 0, d = w, e = 0 and f = t.

Theorem 2.2 We have

$${}_{3}\phi_{2}\binom{a,b,c}{d,e};q,f\theta\left\{\frac{(xu;q)_{\infty}}{(xs;q)_{\infty}}\right\} = \frac{(xu;q)_{\infty}}{(xs;q)_{\infty}} {}_{4}\phi_{3}\binom{a,b,c,u/s}{d,e,q/xs};q,-qf/x\right).$$
(2.2)

provided that $\max\{|f/x|, |xs|\} < 1$.

Proof.

$${}_{3}\phi_{2} \begin{pmatrix} a, b, c \\ d, e \end{pmatrix}; q, f\theta \left\{ \frac{(xu; q)_{\infty}}{(xs; q)_{\infty}} \right\}$$

$$= \sum_{k=0}^{\infty} \frac{(a, b, c; q)_{k}}{(q, d, e; q)_{k}} f^{k} \theta^{k} \left\{ \frac{(xu; q)_{\infty}}{(xs; q)_{\infty}} \right\}$$

$$= \sum_{k=0}^{\infty} \frac{(a, b, c; q)_{k}}{(q, d, e; q)_{k}} f^{k} q^{-k(k-1)} s^{k} \frac{(u/s; q)_{k}(xu; q)_{\infty}}{(xsq^{-k}; q)_{\infty}}$$

$$= \frac{(xu; q)_{\infty}}{(xs; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a, b, c; q)_{k}}{(q, d, e; q)_{k}} f^{k} q^{-k(k-1)} s^{k} \frac{(u/s; q)_{k}}{(-xs/q)^{k} q^{-k(k-1)}(q/xs; q)_{k}}$$

$$= \frac{(xu; q)_{\infty}}{(xs; q)_{\infty}} {}_{4}\phi_{3} \begin{pmatrix} a, b, c, u/s \\ d, e, q/xs; q, -qf/x \end{pmatrix}.$$

Note that if c = e = 0 in (2.2) we get equation (1.15) proved by Li and Tan [8].

Setting u = 0 in (2.2), we get the following corollary:

Corollary 2.2.1. We have

$${}_{3}\phi_{2}\left({a,b,c\atop d,e};q,f\theta\right)\left\{\frac{1}{(xs;q)_{\infty}}\right\} = \frac{1}{(xs;q)_{\infty}} {}_{4}\phi_{3}\left({a,b,c,0\atop d,e,q/xs};q,-qf/x\right),$$
(2.3)

provided that $\max\{|xs|, |qf/x|\} < 1$.

Setting s = 0 in (2.2), we get the following corollary:

Corollary 2.2.2. We have

$${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e;q,f\theta\end{pmatrix}\{(xu;q)_{\infty}\}=(xu;q)_{\infty}{}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e;q,-fu\end{pmatrix},$$
(2.4)

provided that |fu| < 1.

Theorem 2.3 We have

$${}_{3}\phi_{2}\binom{a,b,c}{d,e};q,f\theta \left\{ (xs,xt,q)_{\infty} \right\}$$

$$= (xs,xt,q)_{\infty} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a,b,c;q)_{k+j}}{(d,e;q)_{k+j}} \frac{(-ftq^{-j})^{k}}{(q;q)_{k}} \frac{(q/xt;q)_{j}(ftsx/q)^{j}q^{-\binom{j}{2}}}{(q;q)_{j}}.$$
(2.5)

Proof. By using Leibniz rule (1.11), we have

$${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}\{(xs,xt;q)_{\infty}\}$$

$$\begin{split} &= \sum_{k=0}^{\infty} \frac{(a,b,c;q)_k}{(q,d,e;q)_k} f^k \sum_{j=0}^k {k \brack j} \theta_q^j \{(xs;q)_{\infty}\} \theta^{k-j} \{(xtq^{-j};q)_{\infty}\} \\ &= \sum_{k=0}^{\infty} \frac{(a,b,c;q)_k}{(q,d,e;q)_k} f^k \sum_{j=0}^k {k \brack j} (-s)^j (xs;q)_{\infty} (-tq^{-j})^{k-j} (xtq^{-j};q)_{\infty} \\ &= \sum_{k=0}^{\infty} \frac{(a,b,c;q)_k}{(q,d,e;q)_k} f^k \sum_{j=0}^k {k \brack j} (-s)^j (xs;q)_{\infty} (-tq^{-j})^{k-j} (xtq^{-j};q)_j (xt;q)_{\infty}. \end{split}$$

By using (1.4) and (1.2) we get

$$= (xs, xt; q)_{\infty} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c; q)_{k+j} f^{k+j}}{(q, d, e; q)_{k+j}} \frac{(-tq^{-j})^{k}}{(q; q)_{k}} \frac{(q/xt; q)_{j} (-xt)^{j} q^{-j} q^{-\binom{j}{2}}}{(q; q)_{j}}$$
$$= (xs, xt, q)_{\infty} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c; q)_{k+j}}{(d, e; q)_{k+j}} \frac{(-ftq^{-j})^{k}}{(q; q)_{k}} \frac{(q/xt; q)_{j} (ftsx/q)^{j} q^{-\binom{j}{2}}}{(q; q)_{j}}.$$

Note that, setting a = 0, b = 0, c = 0, d = 0, e = 0 and $f = cq^{(k+j-1)/2}$ in (2.5) and by using Euler identity (1.6) and Cauchy identity (1.5), we get the Theorem 2.11. obtained by Chen and Liu [4].

Theorem 2.4. Let the operator ${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}$ be defined as in (2.1) and n is a nonnegative integer, then

$${}_{3}\phi_{2}\binom{a,b,c}{d,e};q,f\theta \left\{ (xt,q)_{\infty}x^{n} \right\}$$

$$= (xt,q)_{\infty}x^{n}\sum_{j=0}^{\infty}\sum_{k=0}^{n}\frac{(a,b,c;q)_{k+j}(q^{-n};q)_{k}(-qf/x)^{k}(-ftq^{-n})^{j}}{(d,e;q)_{k+j}(q;q)_{k}(q;q)_{j}}.$$
(2.6)

Proof. From definition of the operator $_{3}\phi_{2}\begin{pmatrix}a, b, c\\d, e\end{pmatrix}$, we have

$${}_{3}\phi_{2}\binom{a,b,c}{d,e};q,f\theta \left\{(xt,q)_{\infty}x^{n}\right\} = \sum_{k=0}^{\infty}\frac{(a,b,c;q)_{k}}{(q,d,e;q)_{k}}f^{k}\theta^{k}\{x^{n}(xt,q)_{\infty}\}.$$

By using Leibniz rule (1.11), we have

$$\begin{split} &\sum_{k=0}^{\infty} \frac{(a,b,c;q)_{k}}{(q,d,e;q)_{k}} f^{k} \theta^{k} \{(xt,q)_{\infty} x^{n} \} \\ &= \sum_{k=0}^{\infty} \frac{(a,b,c;q)_{k}}{(q,d,e;q)_{k}} f^{k} \sum_{j=0}^{k} {k \brack j} \theta^{j} \{(xt;q)_{\infty} \} \theta^{k-j} \{(xq^{-j})^{n} \} \\ &= \sum_{k=0}^{\infty} \frac{(a,b,c;q)_{k}}{(q,d,e;q)_{k}} f^{k} \sum_{j=0}^{k} {k \brack j} (-t)^{j} (xt;q)_{\infty} q^{-nj} (-1)^{(k-j)} q^{(k-j)} (q^{-n};q)_{k-j} x^{n-(k-j)} \\ &= x^{n} (xt,q)_{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{n} \frac{(a,b,c;q)_{k+j} (q^{-n};q)_{k} (-qf/x)^{k} (-ftq^{-n})^{j}}{(d,e;q)_{k+j} (q;q)_{k} (q;q)_{j}}. \end{split}$$

Note that, setting a = b = c = d = 0 and f = d in (2.6) and then using equations (1.7), (1.2) and (1.4), we get Corollary 2.4. obtained by Zhang and Liu [14].

Setting t = 0 in (2.6), we get the following corollary:

Corollary 2.4.1. We have

SCPAS-2019

have

$${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}\{x^{n}\} = x^{n} {}_{4}\phi_{3}\begin{pmatrix}a,b,c,q^{-n}\\d,e,0\end{bmatrix};q,-qf/x\end{pmatrix}.$$
(2.7)

When c = e = 0 and f = d/ab in (2.7) we obtain equation (1.15) obtained by Li and Tan [8].

3. Applications in *q*-Identities

In this section, we use the operator $_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}$ to give an extension to some wellknown q-identities such as: Euler identities (1.6), (1.7), Ramanujan's sum (1.1), q-Chu-Vanermonde summation formula (1.9) and we give some other identities.

3.1 Extension of Euler Identities

Theorem 3.1. (Extension of Euler identity (1.7)). We have

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^n}{(q;q)_n} \,_{4} \phi_3 \begin{pmatrix} a,b,c,q^{-n} \\ d,e,0 \end{pmatrix}; q,-qf/x = (-x;q)_{\infty} \,_{3} \phi_2 \begin{pmatrix} a,b,c \\ d,e \end{pmatrix}; q,f \end{pmatrix}.$$
(3.1)

Proof.

Recalling

Euler identity, we

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^n}{(q;q)_n} = (-x;q)_{\infty}.$$

Applying the operator $_{3}\phi_{2}\begin{pmatrix}a, b, c\\d, e\end{pmatrix}$ to both sides of the above equation with respect to the parameter x, we get

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}}{(q;q)_n} \,_{3}\phi_2\binom{a,b,c}{d,e}; q, f\theta \left\{ x^n \right\} = \,_{3}\phi_2\binom{a,b,c}{d,e}; q, f\theta \left\{ (-x;q)_{\infty} \right\}.$$

By using (2.7) and (2.4), we get

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^n}{(q;q)_n} \,_{4} \phi_3 \begin{pmatrix} a, b, c, q^{-n} \\ d, e, 0 \end{pmatrix}; q, -qf/x = (-x;q)_{\infty} \,_{3} \phi_2 \begin{pmatrix} a, b, c \\ d, e \end{pmatrix}; q, f \, .$$

Theorem 3.2. (Cauchy identity). We have

$$\sum_{k=0}^{\infty} \frac{(a;q)_k}{(q;q)_k} x^k = \frac{(ax;q)_{\infty}}{(x;q)_{\infty}}$$

Proof. Setting b = c = e = 0, f = -x, in equation (3.1), we get $\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^n}{(q;q)_n} {}_{2}\phi_1 \left(\begin{array}{c} q^{-n}, a \\ d \end{array}; q, q \right) = (-x;q)_{\infty} {}_{2}\phi_1 \left(\begin{array}{c} a, 0 \\ d \end{array}; q, -x \right).$ By $\lim_{n \to 0} \frac{u \sin g}{(q;q)_n} {}_{2}\phi_1 \left(\begin{array}{c} a, 0 \\ d \end{array}; q, -x \right).$ Explanation $\lim_{n \to 0} \frac{u \sin g}{(q;q)_n} {}_{2}\phi_1 \left(\begin{array}{c} a, 0 \\ d \end{array}; q, -x \right).$ By $\lim_{n \to 0} \frac{u \sin g}{(q;q)_n} {}_{2}\phi_1 \left(\begin{array}{c} a, 0 \\ d \end{array}; q, -x \right).$

Replacing
$$(d, x)$$
 by $(0, -x)$ in above equation to have:

Proof.

Conference paper

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}(-xa)^n}{(q;q)_n} = (x;q)_{\infty} \sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} x^n.$$

by using Euler identity we obtain

$$\frac{(xa;q)_{\infty}}{(x;q)_{\infty}} = \sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n} x^n.$$

(1.6),

we

have

Setting c = e = 0, f = d/ab in (3.1) and then using the Hein's q-Gauss summation formula (1.8), we get the following corollary:

Corollary 3.2.1. We have

$$\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^n}{(q;q)_n} \,_{3}\phi_2\left(\begin{matrix} q^{-n}, a, b \\ d, 0 \end{matrix}; q, -dq/abx \right) = (-x;q)_{\infty} \frac{(d/a, d/b; q)_{\infty}}{(d, d/ab; q)_{\infty}}.$$

3.3. (Extension of Euler identity (1.6)). We $\sum_{n=0}^{\infty} \frac{x^n}{(q;q)_n} {}_4\phi_3 \begin{pmatrix} a, b, c, q^{-n} \\ d, e, 0 \end{pmatrix}; q, -qf/x = \frac{1}{(x;q)_{\infty}} {}_4\phi_3 \begin{pmatrix} (1.6) \\ a, b, c, 0 \\ d, e, q \end{pmatrix}.$ Theorem have (3.2)

Euler identity $\sum_{n=0}^{\infty} \frac{x^n}{(q;q)_n} = \frac{1}{(x;q)_{\infty}}.$ operator ${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e;q,f\theta\end{pmatrix}$ with respect to x $\sum_{n=0}^{\infty} \frac{1}{(q;q)_{n}} {}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e;q,f\theta\end{pmatrix} \{x^{n}\} = {}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e;q,f\theta\end{pmatrix} \{\frac{1}{(x;q)_{\infty}}\}.$ Applying the have we

By using (2.7) and (2.3) the proof is complete.

From

3.2. Extension of Ramanujan's Sum

Theorem 3.4. (Extension of Ramanujan's sum(1.1)). We have

$$\sum_{k=0}^{n} \frac{(s;q)_{n}}{(t;q)_{n}} x^{n} {}_{3}\phi_{2} \left(\begin{matrix} a,b,c\\d,e \end{matrix}; q, -fq^{n} \end{matrix} \right) \\ = \frac{(q,sx,q/sx,t/s;q)_{\infty}}{(t,q/s,x,t/sx;q)_{\infty}} {}_{4}\phi_{3} \left(\begin{matrix} a,b,c,x\\d,e,qsx/t \end{matrix}; q, -qf/t \end{matrix} \right).$$
(3.3)

Proof. From Ramanujan's sum(1.1) we have

$$\sum_{n=0}^{\infty} \frac{(s;q)_n}{(t;q)_n} x^n = \frac{(q,t/s,sx,q/sx;q)_{\infty}}{(t,q/s,x,t/sx;q)_{\infty}}$$
$$\sum_{n=0}^{\infty} (s;q)_n x^n \frac{(tq^n;q)_{\infty}}{(t;q)_{\infty}} = \frac{(q,t/s,sx,q/sx;q)_{\infty}}{(t,q/s,x,t/sx;q)_{\infty}}$$
$$\sum_{n=0}^{\infty} (s;q)_n x^n (tq^n;q)_{\infty} = \frac{(q,t/s,sx,q/sx;q)_{\infty}}{(q/s,x,t/sx;q)_{\infty}}.$$

SCPAS-2019

Applying the operator $_{3}\phi_{2}\begin{pmatrix}a, b, c\\d, e\end{pmatrix}$ to both sides of the above equation with respect to the parameter t, we get

$$\sum_{n=0}^{\infty} (s;q)_n x^n {}_{3}\phi_2 \begin{pmatrix} a,b,c\\d,e \end{pmatrix}; q,f\theta \left\{ (tq^n;q)_{\infty} \right\}$$
$$= \frac{(q,sx,q/sx;q)_{\infty}}{(q/s,x;q)_{\infty}} {}_{3}\phi_2 \begin{pmatrix} a,b,c\\d,e \end{pmatrix}; q,f\theta \left\{ \frac{(t/s,q)_{\infty}}{(t/sx;q)_{\infty}} \right\}$$

Now by using the relation (2.4) and (2.2) we get (3.3).

Corollary 3.4.1. We have

$$\sum_{n=0}^{\infty} \frac{(s;q)_n}{(t;q)_n} (tq^{n-m};q)_m x^n = \frac{(q,sx,q/sx,t/s;q)_{\infty}}{(t,q/s,x,t/sx;q)_{\infty}} \frac{(qs/t;q)_m}{(qsx/t;q)_m} x^m.$$

Proof. letting $a = q^{-m}$, b = c = d = e = 0 and f = -t in (3.3), we have

$$\sum_{n=0}^{\infty} \frac{(s;q)_n}{(t;q)_n} x^n \sum_{k=0}^m \frac{(q^{-m};q)_k}{(q;q)_k} (tq^n)^k = \frac{(q,sx,q/sx,t/s;q)_{\infty}}{(t,q/s,x,qsx/t;q)_{\infty}} \,_2\phi_1 \begin{pmatrix} q^{-m},x\\qsx/t;q,q \end{pmatrix}$$
$$\sum_{n=0}^{\infty} \frac{(s;q)_n}{(t;q)_n} x^n \frac{(tq^{n-m};q)_{\infty}}{(tq^n;q)_{\infty}} = \frac{(q,sx,q/sx,t/s;q)_{\infty}}{(t,q/s,x,t/sx;q)_{\infty}} \frac{(qs/t;q)_m}{(qsx/t;q)_m} x^m$$
$$\sum_{n=0}^{\infty} \frac{(s;q)_n}{(t;q)_n} (tq^{n-m};q)_m x^n = \frac{(q,sx,q/sx,t/s;q)_{\infty}}{(t,q/s,x,t/sx;q)_{\infty}} \frac{(qs/t;q)_m}{(qsx/t;q)_m} x^m.$$

Setting b = c = e = 0, f = -x, in (3.2) and using the *q*-Chu-Vandermonde summation formula (1.9), we get the following corollary:

Corollary 3.4.2. We have

$${}_{2}\phi_{1}\left(\frac{d/a,0}{d};q,xa\right)=\frac{1}{(x;q)_{\infty}}{}_{3}\phi_{2}\left(\frac{a,0,0}{d,q/x};q,q\right).$$

3.3 Extension of the q-Chu-Vandermonde Summation Formula

Theorem 3.5. (Extension of the q-Chu-Vandermonde summation formula (1.9)). We have

$$\sum_{j=0}^{n} \frac{(q^{-n}, x; q)_{j}}{(q, y; q)_{j}} q^{j} {}_{4}\phi_{3} \begin{pmatrix} a, b, c, q^{j}x \\ d, e, qx/y \end{pmatrix}; q, -qf/y \\ = x^{n} \frac{(y/x; q)_{n}}{(y; q)_{n}} {}_{4}\phi_{3} \begin{pmatrix} a, b, c, xq^{2n} \\ d, e, q^{1+n}x/y \end{pmatrix}; q, -qf/y \end{pmatrix}.$$
(3.4)

summation

formula

Proof.

Recalling

the q -Chu-Vandermonde

$$\sum_{j=0}^{n} \frac{(q^{-n}, x; q)_j}{(q, y; q)_j} q^j = x^n \frac{(y/x; q)_n}{(y; q)_n}$$

$$\frac{(q^{-n}, x; q)_j}{(q^{-n}, x; q)_j} q^j \frac{(yq^j; q)_{\infty}}{(y^{-n}, q)_{\infty}} = x^n \frac{(yq^n; q)_{\infty}}{(y^{-n}, q)_{\infty}}.$$

 $\sum_{j=0}^{n} \frac{(q^{-n}, x; q)_{j}}{(q; q)_{j}} q^{j} \frac{(yq^{j}; q)_{\infty}}{(y/x; q)_{\infty}} = x^{n} \frac{(yq^{n}; q)_{\infty}}{(y/xq^{n}; q)_{\infty}}$ Applying the operator $_{3}\phi_{2} \begin{pmatrix} a, b, c \\ d, e \end{pmatrix}$ with respect to y, we obtain

$$\sum_{j=0}^{n} \frac{(q^{-n}, x; q)_{j}}{(q; q)_{j}} q^{j} {}_{3}\phi_{2} \begin{pmatrix} a, b, c \\ d, e \end{pmatrix} ; q, f\theta \left\{ \frac{(yq^{j}; q)_{\infty}}{(y/x; q)_{\infty}} \right\} = x^{n} {}_{3}\phi_{2} \begin{pmatrix} a, b, c \\ d, e \end{pmatrix} ; q, f\theta \left\{ \frac{(yq^{n}; q)_{\infty}}{(y/xq^{n}; q)_{\infty}} \right\}$$

Then by using (2.2) the proof is complete.

4. Applications *q*-Integrals

In this section, we use the operator $_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}$ to obtain an extension of the Askey beta integral (1.16), the Ramanujan's identity (1.17), Ramanujans beta integral (1.18) and we give some other integrals formulas.

4.1. Extension of the Askey Beta Integral

Theorem 4.1. (Extension of the Askey Beta Integral (1.16)). We have

$$\int_{-\infty}^{\infty} \frac{(xt, yt; q)_{\infty}}{(-wt, ut; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c; q)_{k+j}}{(d, e; q)_{k+j}} \frac{(fyq^{-1-j}/wu)^{k}}{(q; q)_{k}} \frac{(-uwq^{2}/xy; q)_{j}}{(q; q)_{j}} (\frac{-fyxt}{wuq^{2}})^{j} q^{-\binom{j}{2}} d_{q}t$$

$$= \frac{2(1-q)(q^{2}; q^{2})_{\infty}^{2} (wu, q/wu, x/u, -x/w, y/u, -y/u; q)_{\infty}}{(q; q)_{\infty} (w^{2}, u^{2}, q^{2}/w^{2}; q^{2})_{\infty}}$$

$$\times \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c; q)_{k+j}}{(d, e; q)_{k+j}} \frac{(fq^{-j}/w)^{k}}{(q; q)_{k}} \frac{(-qw/x; q)_{j}}{(q; q)_{j}} (\frac{-fx}{uwq})^{j} q^{-\binom{j}{2}}.$$
(4.1)

Proof. From Askey beta integral (1.16) we have:

$$\int_{-\infty}^{\infty} \frac{(xt, yt; q)_{\infty}}{(-wt, ut; q)_{\infty}} d_q t = \frac{2(1-q)(q^2; q^2)_{\infty}^2 (wu, q/wu, x/u, -x/w, y/u, -y/u; q)_{\infty}}{(q; q)_{\infty} (w^2, u^2, q^2/w^2; q^2)_{\infty} (-xy/uwq; q)_{\infty}}$$

multiplying both sides of the above equation by $(-xy/uwq;q)_{\infty}$ and then applying the operator

$${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e;q,f\theta\end{pmatrix}\text{ with respect to }x,\text{ we get}$$

$$\int_{-\infty}^{\infty} \frac{(yt;q)_{\infty}}{(-wt,ut;q)_{\infty}} {}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e;q,f\theta\end{pmatrix}\{(xt,-xy/uwq;q)_{\infty}\}d_{q}t$$

$$= \frac{2(1-q)(q^{2};q^{2})^{2}{}_{\infty}(wu,q/wu,y/u,-y/u;q)_{\infty}}{(q;q)_{\infty}(w^{2},u^{2},q^{2}/w^{2};q^{2})_{\infty}} {}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e;q,f\theta\}\{(x/u,-x/w;q)_{\infty}\}.$$

Using equation (2.5) on both sides of above equation, we get the required result.

Note that setting a = b = c = d = e = 0 and $f = cq^{(k+j-1)/2}$ in (4.1) and then using Cauchy identity and Euler identity we get Theorem 6.3 obtained by Chen and Liu [4].

Corollary 4.4.1. We have

$$\int_{-\infty}^{\infty} \frac{(xt,yt;q)_{\infty}}{(-wt,ut;q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a,b;q)_{k+j}}{(u;q)_{k+j}} \frac{(yq^{-1-j}/ab)^k}{(q;q)_k} \frac{(-uwq^2/xy;q)_j}{(q;q)_j} (\frac{-yxt}{abq^2})^j q^{-\binom{j}{2}} d_q t$$

$$= \frac{2(1-q)(q^{2};q^{2})_{\infty}^{2}(wu,q/wu,x/u,-x/w,y/u,-y/u;q)_{\infty}}{(q;q)_{\infty}(w^{2},u^{2},q^{2}/w^{2};q^{2})_{\infty}}\frac{(u/a,u/b,q)_{\infty}}{(u,u/ab;q)_{\infty}}}{(u,u/ab;q)_{\infty}}$$

$$\times {}_{3}\phi_{2}\left(\frac{a,b,-\frac{qw}{x}}{\frac{dqab}{u},0};q,\frac{x}{u}\right).$$
(4.2)

Proof. Setting c = e = 0, d = u and f = uw/ab in (4.1) we have

$$L.H.S. = \int_{-\infty}^{\infty} \frac{(xt, yt; q)_{\infty}}{(-wt, ut; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b; q)_{k+j}}{(u; q)_{k+j}} \frac{(yq^{-1-j}/ab)^k}{(q; q)_k} \frac{(-uwq^2/xy; q)_j}{(q; q)_j} (\frac{-yxt}{abq^2})^j q^{-\binom{j}{2}} d_q t.$$

$$\begin{split} \text{R.H.S.} &= \frac{2(1-q)(q^2;q^2)_{\infty}^2(wu,q/wu,x/u,-x/w,y/u,-y/u;q)_{\infty}}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \\ &\times \sum_{j=0}^{\infty} \frac{(a,b,-qw/x;q;q)_j}{(q,u;q)_j} (\frac{-x}{abq})^j q^{-j_2} \sum_{k=0}^{\infty} \frac{(aq^j,bq^j;q)_k(uq^{-j}/ab)^k}{(q,q^ju;q)_k} \\ &= \frac{2(1-q)(q^2;q^2)_{\infty}^2(wu,q/wu,x/u,-x/w,y/u,-y/u;q)_{\infty}}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \\ &\times \sum_{j=0}^{\infty} \frac{(a,b,-qw/x;q;q)_j}{(q,u;q)_j} (\frac{-x}{abq})^j q^{-j_2} _{2} _{2} \phi_1 \left(\frac{aq^j,bq^j}{uq^j};q,uq^{-j}/ab\right) \\ &= \frac{2(1-q)(q^2;q^2)_{\infty}^2(wu,q/wu,x/u,-x/w,y/u,-y/u;q)_{\infty}}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \quad \text{(by using (1.8))} \\ &= \frac{2(1-q)(q^2;q^2)_{\infty}^2(wu,q/wu,x/u,-x/w,y/u,-y/u;q)_{\infty}}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \quad \text{(by using (1.2))} \\ &= \frac{2(1-q)(q^2;q^2)_{\infty}^2(wu,q/wu,x/u,-x/w,y/u,-y/u;q)_{\infty}}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \quad \text{(by using (1.2))} \\ &= \frac{2(1-q)(q^2;q^2)_{\infty}^2(wu,q/wu,x/u,-x/w,y/u,-y/u;q)_{\infty}}{(u,u/ab;q)_{\infty}} \frac{(u/a,u/b,q)_{\infty}}{(u,u/ab;q)_{\infty}} \\ &\times \sum_{j=0}^{\infty} \frac{(a,b,-qw/x;q)_j}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(uq^j)_{\alpha}(u^j)_{\alpha}(u,u/b,q)_{\infty}} \\ &\times \sum_{j=0}^{\infty} \frac{(a,b,-qw/x;q)_j}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \frac{(u/a,u/b,q)_{\infty}}{(u,u/ab;q)_{\infty}} \\ &\times \sum_{j=0}^{\infty} \frac{(a,b,-qw/x;q)_j}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(u_j^j)^j} \frac{(u/a,u/b,q)_{\infty}}{(u,u/ab;q)_{\infty}} \\ &\times \sum_{j=0}^{\infty} \frac{(a,b,-qw/x;q)_j}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \frac{(u/a,u/b,q)_{\infty}}{(u,u/ab;q)_{\infty}} \frac{1}{(x,q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \frac{(u/a,u/b,q)_{\infty}}{(u,u/ab;q)_{\infty}} \\ &\times \sum_{j=0}^{\infty} \frac{(a,b,-qw/x;q)_j}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{(u/a,u/b,q)_{\infty}}{(u,u/ab;q)_{\infty}} \\ \\ &\times \sum_{j=0}^{\infty} \frac{(a,b,-qw/x;q)_j}{(q;q)_{\infty}(w^2,u^2,q^2/w^2;q^2)_{\infty}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1}{(-1)^j q^{-j_2}} \frac{1$$

4.2. Extension of Ramanujan's Identity

Theorem 4.2. (Extension of the Ramanujan's Identity (1.17)). We have

$$\int_{-\infty}^{\infty} \frac{e^{-x^2 + 2mx}}{(sqe^{1/2}e^{2ikx}, tqe^{1/2}e^{-2ikx}; q)_{\infty}} \, _4\phi_3\begin{pmatrix}a, b, c, 0\\d, e, \frac{q^{1/2}}{s}e^{-2kix}; q, -qf \end{pmatrix} dx$$

SCPAS-2019

$$= \frac{\sqrt{\pi}e^{m^{2}}(-sqe^{2mki}, -tqe^{-2mki};q)_{\infty}}{(stq;q)_{\infty}} {}_{4}\phi_{3}\begin{pmatrix} a, b, c, \frac{-e^{2mki}}{t}; q, -qf/s \\ d, e, 1/ts \end{pmatrix},$$
(4.3)

provided that $\max\{|stq|, |qf/s|\} < 1$.

Proof. Recalling Ramanujan's identity (1.17), then applying the operator ${}_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{pmatrix}$ on both sides of the above equation with respect to the parameter *s*, we get

$$\int_{-\infty}^{\infty} \frac{e^{-x^2+2mx}}{(tq^{1/2}e^{-2ikx};q)_{\infty}} \,_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{cases};q,f\theta \left\{\frac{1}{(sq^{1/2}e^{2ikx};q)_{\infty}}\right\}dx \\ = \sqrt{\pi}e^{m^{2}}\left(-tqe^{-2mki};q\right)_{\infty} \,_{3}\phi_{2}\begin{pmatrix}a,b,c\\d,e\end{cases};q,f\theta \left\{\frac{(-sqe^{2mki};q)_{\infty}}{(stq;q)_{\infty}}\right\}.$$

Now by using equations (2.3) and (2.2) the proof is complete.

4.3 Extension The Ramanujan's Beta Integral

Theorem 4.3 (Extension The Ramanujan's beta integral (1.17))

$$\int_{0}^{\infty} t^{x-1} \frac{(-yt;q)_{\infty}}{(t;q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a,b;q)_{k+j}}{(d,e;q)_{k+j}} \frac{(-fq^{-x-j})^{k}}{(q;q)_{k}} \frac{(q^{x+1}/y;q)_{j}(-ftyq^{-x-1})^{j}}{(q;q)_{j}} q^{-\binom{j}{2}} d_{q}t$$

$$= \frac{\pi}{\sin(\pi x)} \frac{(q^{1-x};q)_{\infty}}{(q,yq^{-x};q)_{\infty}} \ _{3}\phi_{2} \binom{a,b,c}{d,e}; q, -f$$
(4.4)

Proof. Multiplying The Ramanujan's beta integral (1.17) by $(yq^{-x};q)_{\infty}$ we get

$$\int_{0}^{\infty} t^{x-1} \frac{1}{(t;q)_{\infty}} (-yt, yq^{-x};q)_{\infty} dt = \frac{\pi}{\sin(\pi x)} \frac{(q^{1-x};q)_{\infty}}{(q;q)_{\infty}} (y;q)_{\infty}.$$

Now applying the operator ${}_{3}\phi_{2}\begin{pmatrix}a, b, c\\d, e\\ \end{pmatrix}$; $q, f\theta$ with respect to y, and using tow relations (2.5), (2.4) the proof is complete.

Setting c = e, f = -d/ab in (4.4) and then using Hein's q-Gauss summation formula (1.8) we can obtain the following corollary:

Corollary 4.3.1. We have

$$\begin{split} \int_{0}^{\infty} t^{x-1} \frac{(-yt;q)_{\infty}}{(t;q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a,b;q)_{k+j}}{(d;q)_{k+j}} \frac{(dq^{-x-j}/ab)^{k}}{(q;q)_{k}} \frac{(q^{x+1}/y;q)_{j}(dtyq^{-x-1}/ab)^{j}}{(q;q)_{j}} q^{-\binom{j}{2}} d_{q}t \\ &= \frac{\pi}{\sin(\pi x)} \frac{(q^{1-x},y;q)_{\infty}}{(q,yq^{-x};q)_{\infty}} \frac{(d/a,d/b;q)_{\infty}}{(d,d/ab;q)_{\infty}}. \end{split}$$

References

[1] G.E. Andrews, On the foundations of combinatorial theory, V: Eulerian differential operators, *Stud. Appl. Math.*, **50** (1971) 345-375.

[2] R. Askey, A q-beta integral associated with BC₁, SIAM J, Math anal, **13**, (1982) 1008-1010.

[3] R. Askey, Two integrals of Ramanujan, Proc. Amer. Math. Soc, 85, (1982) 192-194.

[4] W.Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series, I, Mathematical Essays in Honor of Gian-Carlo Rota, Eds., B.E. Sagan and R.P. Stanley, Birkhäuser, Boston, (1998) 111-129.

[5] G. Gasper and M. Rahman, *Basic Hypergeometric Series*, 2nd ed., Cambridge University Press, Cambridge, MA, 2004.

[6] F.H. Jackson, On q-definite integrals, Quart. J. Pure and Appl. Math., 41 (1910) 193-203.

[7] F.H. Jackson, Basic integration, Quart. J. Math. (Oxford), 2 (1951) 1-16.

[8] N. N. Li and W. Tan, Two generalized q-exponential operators and their applications, Advances in difference equations, 53 (2016) 1-14.

[9] S. Roman, More on the umbral calculus, with emphasis on the *q*-umbral caculus, *J. Math. Anal. Appl.*, **107** (1985) 222–254.

[10] J. Thomae, Beiträge zur theorie der durch die Heinesche Reihe $1 + \frac{(1-q^a)(1-q^b)}{(1-q)(1-q^c)} x + \cdots$ darstellbaren functionen, J. Reine Angew. Math., **70** (1869) 258-281.

[11] J. Thomae, Les séries Heineénnes supérieures, ou les séries de la forme $1 + \frac{(1-q^a)(1-q^b)}{(1-q)(1-q^c)} x + \cdots$, Annali di Matematica Pura ed Applicat. 4 (1870) 105-138.

[12] Z. Z. Zhang and J. Wang, Two operator identities and their applications to terminating basic hypergeometric series and q-integrals, J. Math. Anal. Appl., **312** (2005) 653–665.

[13] Z. Z. Zhang and J. Z. Yang, Finite q -exponential operators with two parameters and their applications, ACTA MATHEMATICA SINICA, Chinese Series, 53 (2010) 1007–1018.

[14] Z. Zhang and M. Liu, Applications operator identities to the multiple q-binomial theorem and q-Gauss summation theorem operators, *DISCRETE MATHEMATICS*, **306** (2006) 1424– 1437.