Applications of the Operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} \boldsymbol{q}, f \theta\right)$

Rasha H. Jaber , Husam L. Saad
Department of Mathematics, College of Science, Basrah University, Basra, Iraq

Abstract

In this paper, we construct the q-exponential operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right)$. We use the operator ${ }_{3} \phi_{2}$ to obtain an extension of Euler identities, Ramanujan's sum, q-Chu- Vanermonde summation formula and we give some other identities. Also we use the operatorm ${ }_{3} \phi_{2}$ to get an extension of the Ramanujan's identity, the Askey beta integral, Ramanujan's beta integral and we give some other integrals formulas.

1- Introduction

In this paper we will use the standard notations forbasic hypergeometric series given in [5], we assume that $|\boldsymbol{q}|<\mathbf{1}$.

Definition 1.1. [5]. Let a be a complex variable. The q-shifted factorial is defined by

$$
(a ; q)_{n}= \begin{cases}1, & \text { if } n=0 \\ \prod_{k=0}^{n-1}\left(1-a q^{k}\right), & \text { if } n=1,2, \ldots\end{cases}
$$

We
define

$$
(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right) .
$$

The following notation is used for the multiple q-shifted factorials:

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \cdots, a_{m} ; q\right)_{n}=\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n}, \quad n=0,1,2, \ldots \\
& \left.a_{1}, a_{2}, \cdots, a_{m} ; q\right)_{\infty}=\left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty} \cdots\left(a_{m} ; q\right)_{\infty} .
\end{aligned}
$$

Definition 1.2 [5]. The generalized basic hypergeometric series is defined by

$$
{ }_{r} \phi_{s}\left(\begin{array}{l}
a_{1}, a_{2}, \cdots, a_{r} \\
b_{1}, b_{2}, \cdots, b_{s}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{n}}{\left(q, b_{1}, \ldots, b_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\left(\frac{n}{2}\right)}\right]^{1+s-r} x^{n},
$$

where $r, s \in \mathbb{N} ; a_{1}, \ldots, a_{r} \in C ; b_{1}, \ldots, b_{s} \in C \backslash\left\{q^{-k}, k \in N\right\}$ are assumed to be such that none of the denominator factors evaluate to zero. This series converges absolutely for all x if $r \leq s$ and for $|x|<1$ if $r=s+1$.

The case $r=s+1$ is the most important class of series

$$
{ }_{s+1} \phi_{s}\left(\begin{array}{c}
a_{1}, a_{2}, \cdots, a_{s+1} \\
b_{1}, b_{2}, \cdots, b_{s}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \cdots, a_{s+1} ; q\right)_{n}}{\left(q, b_{1}, \cdots, b_{s} ; q\right)_{n}} x^{n}, \quad|x|<1
$$

The general bilateral basic hypergeometric series is given by:

$$
{ }_{r} \psi_{s}\left(\begin{array}{c}
a_{1}, \cdots, a_{r} \\
b_{1}, b_{2}, \cdots, b_{s}
\end{array} ; q, x\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}, \cdots, a_{r} ; q\right)_{n}}{\left(b_{1}, \cdots, b_{s} ; q\right)_{n}}\left[(-1)^{n} q^{\binom{n}{2}}\right]^{s-r} x^{n}, \quad|x|<1
$$

Ramanujan's sum

$$
\begin{equation*}
{ }_{1} \psi_{1}(a ; b ; q, x)=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(b ; q)_{n}} x^{n}=\frac{(q, b / a, a x, q / a x ; q)_{\infty}}{(b, q / a, x, b / a x)_{\infty}} \tag{1.1}
\end{equation*}
$$

Definition 1.3 [5]. For $n \in N$, the q-binomial coefficient is defined by

$$
\left[\begin{array}{lc}
n \\
k
\end{array}\right]=\left\{\begin{array}{lc}
\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}, & \text { if } 0 \leq k \leq n \\
0, & \text { otherwise }
\end{array}\right.
$$

In this paper, we will use the following identities ([5]):

$$
\begin{gather*}
(a ; q)_{n}=\frac{(a ; q)_{\infty}}{\left(a q^{n} ; q\right)_{\infty}} . \tag{1.2}\\
\left(a q^{-n} ; q\right)_{n}=(q / a ; q)_{n}(-a / q)^{n} q^{-\left(\frac{n}{2}\right)} . \tag{1.3}\\
(a ; q)_{n}=\left(q^{1-n} / a ; q\right)_{n}(-a)^{n} q^{\binom{n}{2}} . \tag{1.4}
\end{gather*}
$$

One of the most important identities is the Cauchy identity ([5])

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} x^{n}=\frac{(a x ; q)_{\infty}}{(x ; q)_{\infty}},|x|<1 \tag{1.5}
\end{equation*}
$$

Euler found the following special case of Cauchy identity ([5]):

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{x^{n}}{(q ; q)_{n}}=\frac{1}{(x ; q)_{\infty}},|x|<1 \tag{1.6}\\
& \sum_{n=0}^{\infty} \frac{q^{\binom{2}{2}} x^{n}}{(q ; q)_{n}}=(-x ; q)_{\infty} \tag{1.7}
\end{align*}
$$

Hein's q-Gauss summation formula is ([5])

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
a, b \tag{1.8}\\
c
\end{array} ; q, c / a b\right)=\frac{(c / a, c / b ; q)_{\infty}}{(c, c / a b ; q)_{\infty}}
$$

The q-Chu-Vandermonde summation formula ([5]):

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, b \tag{1.9}\\
c
\end{array} ; q, q\right)=\frac{(c / b ; q)_{n}}{(c ; q)_{n}} b^{n}
$$

Definition 1.4 [1, 9]. The q-differential operator θ is defined by

$$
\begin{equation*}
\theta\{f(x)\}=\frac{f\left(q^{-1} x\right)-f(x)}{q^{-1} x} \tag{1.10}
\end{equation*}
$$

Definition 1.5 [9]. The Leibniz rule for θ is

$$
\theta^{n}\{f(x) g(x)\}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{1.11}\\
k
\end{array}\right] \theta^{k}\{f(x)\} \theta^{n-k}\left\{g\left(x q^{-k}\right)\right\}
$$

The following identities are easy to prove:
Theorem 1.6 [4, 12]. Let θ be defined as in (1.10), then

$$
\begin{gathered}
\theta^{k}\left\{x^{n}\right\}=(-1)^{k} x^{n-k} q^{k}\left(q^{-n} ; q\right)_{k^{.}} \\
\theta^{k}\left\{(x t ; q)_{\infty}\right\}=(-t)^{k}(x t ; q)_{\infty} \\
\theta^{k}\left\{\frac{(x v ; q)_{\infty}}{(x t ; q)_{\infty}}\right\}=t^{k} q^{-\binom{k}{2}}(v / t ; q)_{k} \frac{(x v ; q)_{\infty}}{\left(x t q^{-k} ; q\right)_{\infty}}, \quad|x t|<1
\end{gathered}
$$

Definition 1.7 [4]. The q-exponential operator $E(b \theta)$ is defined by

$$
E(b \theta)=\sum_{n=0}^{\infty} \frac{(b \theta)^{n} q^{\binom{n}{2}}}{(q ; q)_{n}}
$$

Theorem 1.8 Let θ be defined as in (1.10), then

$$
\begin{align*}
& E(b \theta)\left\{(a t ; q)_{\infty}\right\}=(a t, b t ; q)_{\infty} \\
& E(b \theta)\left\{(a s, a t, ; q)_{\infty}\right\}=\frac{(a s, a t, b s, b t ; q)_{\infty}}{(a b s t / q ; q)_{\infty}} \tag{1.12}
\end{align*}
$$

Based on the q-Chu-Vandermonde summation formula (1.9), Zhang and Yang [13] considered the finite q-exponential operator ${ }_{2} \mathcal{T}_{1}\left(\begin{array}{c}q^{-N}, \mathrm{v} \\ w\end{array} ; q, t \theta\right)$ with two parameters as follows:
Definition 1.9 [13]. The finite q-exponential operator ${ }_{2} \mathcal{J}_{1}\left(\begin{array}{c}q^{-N}, v \\ w\end{array}, q, t \theta\right)$ is defined by

$$
{ }_{2} \mathcal{J}_{1}\left(\begin{array}{c}
q^{-N}, v \tag{1.13}\\
w
\end{array} ; q, t \theta\right)=\sum_{n=0}^{N} \frac{\left(q^{-N}, v ; q\right)_{n}}{(q, w ; q)_{n}}(t \theta)^{n}
$$

Zhang and Yang [13] proved the following result:
Theorem 1.10 [13]. Let ${ }_{2} \mathcal{T}_{1}\left(\begin{array}{c}q^{-N}, v \\ w\end{array} ; q, t \theta\right)$ be defined as in (1.13), then we have

$$
{ }_{2} \mathcal{J}_{1}\left(\begin{array}{c}
q^{-N}, v \\
w
\end{array} q, t \theta\right)\left\{(x b ; q)_{\infty}\right\}=(x b ; q)_{\infty}{ }_{2} \psi_{1}\left(\begin{array}{c}
q^{-N}, v \\
w
\end{array} ; q,-t b\right)
$$

Inspired by the basic hypergeometric series ${ }_{2} \phi_{1}, \mathrm{Li}$ and Tan [8] introduced the generalized q-exponential operator $\mathbb{E}\left[\begin{array}{c}\boldsymbol{u}, \boldsymbol{v} \\ { }_{w}\end{array} q ; t \theta\right]$ with three parameters as follows:

Definition 1.11 [8]. The generalized q-exponential operator $\mathbb{E}\left[\begin{array}{c}\boldsymbol{u}, \boldsymbol{v} \\ { }_{w}\end{array} q ; t \theta\right]$ is defined by

$$
\mathbb{E}\left[\left.\begin{array}{c}
\boldsymbol{u}, \boldsymbol{v} \tag{1.14}\\
w
\end{array} \right\rvert\, q ; t \theta\right]=\sum_{n=0}^{\infty} \frac{(u, v ; q)_{n}}{(q, w ; q)_{n}}(t \theta)^{n}
$$

Li and Tan [8] proved the following result:
Theorem 1.12 [8]. Let $\mathbb{E}\left[\left.\begin{array}{c}\boldsymbol{u}, \boldsymbol{v} \\ w\end{array} \right\rvert\, q ; t \theta\right]$ be defined as in (1.14), then we have

$$
\begin{align*}
& \mathbb{E}\left[\left.\begin{array}{c}
\boldsymbol{u}, \boldsymbol{v} \\
w
\end{array} \right\rvert\, q ; \frac{w}{u v \theta}\right]\left\{x^{n}\right\}=x^{n}{ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-N}, u, v \\
w, 0
\end{array} ; q,-\frac{q w}{u v x}\right) \\
& \mathbb{E}\left[\left.\begin{array}{c}
\boldsymbol{u}, \boldsymbol{v} \\
w
\end{array} \right\rvert\, q ; t \theta\right]\left\{\frac{(x a ; q)_{\infty}}{(x b ; q)_{\infty}}\right\}=\frac{(x a ; q)_{\infty}}{(x b ; q)_{\infty}}{ }_{3} \phi_{2}\left(\begin{array}{c}
u, v, a / b \\
w, q / x b ; q, ; q,-q t / x)
\end{array}, .\right. \tag{1.15}
\end{align*}
$$

where θ acts on x.

Tho mae $[10,11]$ Jackson $[6,7]$ introduced the q-integral

$$
\int_{0}^{1} f(t) d_{q} t=(1-q) \sum_{n=0}^{\infty} f\left(q^{n}\right) q^{n}
$$

and Jackson gave the more general definition

$$
\int_{a}^{b} f(t) d_{q} t=\int_{0}^{b} f(t) d_{q} t-\int_{0}^{a} f(t) d_{q} t
$$

where

$$
\int_{0}^{a} f(t) d_{q} t=a(1-q) \sum_{n=0}^{\infty} f\left(a q^{n}\right) q^{n}
$$

Jackson also defined an integral on $(0, \infty)$ by

$$
\int_{0}^{\infty} f(t) d_{q} t=(1-q) \sum_{n=-\infty}^{\infty} f\left(q^{n}\right) q^{n}
$$

The bilateral q-integral is defined by

$$
\int_{-\infty}^{\infty} f(t) d_{q} t=(1-q) \sum_{n=-\infty}^{\infty}\left[f\left(q^{n}\right)+f\left(-q^{n}\right)\right] q^{n}
$$

Askey beta integral is given by ([2]):

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{(x t, y t ; q)_{\infty}}{(-w t, u t ; q)_{\infty}} d_{q} t=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}(-x y / u w q ; q)_{\infty}} \tag{1.16}
\end{equation*}
$$

Ramanujan's identity (i) is given by ([3])

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{-x^{2}+2 m x}}{\left(s q^{1 / 2} e^{2 i k x}, t q^{1 / 2} e^{-2 i k x} ; q\right)_{\infty}} d x=\sqrt{\pi} e^{m^{2}} \frac{\left(-s q e^{2 m k i},-t q e^{-2 m k i} ; q\right)_{\infty}}{(s t q ; q)_{\infty}} \tag{1.17}
\end{equation*}
$$

The Ramanujan's beta integral is given by

$$
\begin{equation*}
\int_{0}^{\infty} t^{x-1} \frac{(-y t ; q)_{\infty}}{(t ; q)_{\infty}} d t=\frac{\pi}{\sin (\pi x)} \frac{\left(q^{1-x}, y ; q\right)_{\infty}}{\left(q, y q^{-x} ; q\right)_{\infty}} \tag{1.18}
\end{equation*}
$$

2. The q-Exponential Operator and its Operator Identities

In this section, based on the basic hypergeometric series ${ }_{3} \phi_{2}$, we define a q-exponential operator with five parameters ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right)$ and obtain some its operator identities.
Definition 2.1. The q-exponential operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right)$ is defined as follows:

$$
{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \tag{2.1}\\
d, e
\end{array} q, f \theta\right)=\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{n}}(f \theta)^{k}
$$

Note that the finite q-exponential operator defined by Zhang and Yang [13] can be considered as special case of our operator for $a=q^{-N}, b=v, d=w$ and $c=e=0$. Also, the generalized q-exponential operator defined by Li and Tan in [8] can be considered as special case of our operator for $a=u, b=v$, $c=0, d=w, e=0$ and $f=t$.

Theorem 2.2 We have

$$
{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \tag{2.2}\\
d, e
\end{array} q, f \theta\right)\left\{\begin{array}{c}
(x u ; q)_{\infty} \\
(x s ; q)_{\infty}
\end{array}\right\}=\frac{(x u ; q)_{\infty}}{(x s ; q)_{\infty}}{ }_{4} \phi_{3}\left(\begin{array}{c}
a, b, c, u / s \\
d, e, q / x s
\end{array} q,-q f / x\right) .
$$

provided that $\max \{|f / x|,|x s|\}<1$.

Proof.

$$
\begin{aligned}
&{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{\frac{(x u ; q)_{\infty}}{(x s ; q)_{\infty}}\right\} \\
&=\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} \theta^{k}\left\{\frac{(x u ; q)_{\infty}}{(x s ; q)_{\infty}}\right\} \\
&=\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} q^{-k(k-1)} s^{k} \frac{(u / s ; q)_{k}(x u ; q)_{\infty}}{\left(x s q^{-k} ; q\right)_{\infty}} \\
&=\frac{(x u ; q)_{\infty}}{(x s ; q)_{\infty}} \sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} q^{-k(k-1)} s^{k} \frac{(u / s ; q)_{k}}{(-x s / q)^{k} q^{-k(k-1)}(q / x s ; q)_{k}} \\
&=\frac{(x u ; q)_{\infty}}{(x s ; q)_{\infty}}{ }_{4} \phi_{3}\left(\begin{array}{l}
a, b, c, u / s \\
d, e, q / x s
\end{array} ; q,-q f / x\right)
\end{aligned}
$$

Note that if $c=e=0$ in (2.2) we get equation (1.15) proved by Li and Tan [8].
Setting $u=0$ in (2.2), we get the following corollary:
Corollary 2.2.1. We have

$$
{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \tag{2.3}\\
d, e
\end{array} q, f \theta\right)\left\{\frac{1}{(x s ; q)_{\infty}}\right\}=\frac{1}{(x s ; q)_{\infty}} \quad{ }_{4} \phi_{3}\left(\begin{array}{c}
a, b, c, 0 \\
d, e, q / x s
\end{array} q,-q f / x\right)
$$

provided that max $\{|x s|,|q f / x|\}<1$.
Setting $s=0$ in (2.2), we get the following corollary:
Corollary 2.2.2. We have

$$
{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \tag{2.4}\\
d, e
\end{array} q, f \theta\right)\left\{(x u ; q)_{\infty}\right\}=(x u ; q)_{\infty}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} ; q,-f u\right)
$$

provided that $|f u|<1$.
Theorem 2.3 We have

$$
\begin{align*}
& { }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} ; q, f \theta\right)\left\{(x s, x t, q)_{\infty}\right\} \\
& \quad=(x s, x t, q)_{\infty} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c ; q)_{k+j}}{(d, e ; q)_{k+j}} \frac{\left(-f t q^{-j}\right)^{k}}{(q ; q)_{k}} \frac{(q / x t ; q)_{j}(f t s x / q)^{j} q^{-\binom{j}{2}}}{(q ; q)_{j}} \tag{2.5}
\end{align*}
$$

Proof. By using Leibniz rule (1.11), we have

$$
{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{(x s, x t ; q)_{\infty}\right\}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] \theta_{q}^{j}\left\{(x s ; q)_{\infty}\right\} \theta^{k-j}\left\{\left(x t q^{-j} ; q\right)_{\infty}\right\} \\
& =\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right](-s)^{j}(x s ; q)_{\infty}\left(-t q^{-j}\right)^{k-j}\left(x t q^{-j} ; q\right)_{\infty} \\
& =\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right](-s)^{j}(x s ; q)_{\infty}\left(-t q^{-j}\right)^{k-j}\left(x t q^{-j} ; q\right)_{j}(x t ; q)_{\infty} .
\end{aligned}
$$

By using (1.4) and (1.2) we get

$$
\begin{aligned}
& =(x s, x t ; q)_{\infty} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c ; q)_{k+j} f^{k+j}}{(q, d, e ; q)_{k+j}} \frac{\left(-t q^{-j}\right)^{k}}{(q ; q)_{k}} \frac{(q / x t ; q)_{j}(-x t)^{j} q^{-j} q^{-\binom{j}{2}}}{(q ; q)_{j}} \\
& =(x s, x t, q)_{\infty} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c ; q)_{k+j}}{(d, e ; q)_{k+j}} \frac{\left(-f t q^{-j}\right)^{k}}{(q ; q)_{k}} \frac{(q / x t ; q)_{j}(f t s x / q)^{j} q^{-\binom{j}{2}}}{(q ; q)_{j}} .
\end{aligned}
$$

Note that, setting $a=0, b=0, c=0, d=0, e=0$ and $f=c q^{(k+j-1) / 2}$ in (2.5) and by using Euler identity (1.6) and Cauchy identity (1.5), we get the Theorem 2.11. obtained by Chen and Liu [4].

Theorem 2.4. Let the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array}, q, f \theta\right)$ be defined as in (2.1) and n is a nonnegative integer, then

$$
\begin{align*}
& { }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array}, q, f \theta\right)\left\{(x t, q)_{\infty} x^{n}\right\} \\
& \quad=(x t, q)_{\infty} x^{n} \sum_{j=0}^{\infty} \sum_{k=0}^{n} \frac{(a, b, c ; q)_{k+j}\left(q^{-n} ; q\right)_{k}(-q f / x)^{k}\left(-f t q^{-n}\right)^{j}}{(d, e ; q)_{k+j}(q ; q)_{k}(q ; q)_{j}} . \tag{2.6}
\end{align*}
$$

Proof. From definition of the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right)$, we have

$$
{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{(x t, q)_{\infty} x^{n}\right\}=\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} \theta^{k}\left\{x^{n}(x t, q)_{\infty}\right\} .
$$

By using Leibniz rule (1.11), we have

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} \theta^{k}\left\{(x t, q)_{\infty} x^{n}\right\} \\
& =\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right] \theta^{j}\left\{(x t ; q)_{\infty}\right\} \theta^{k-j}\left\{\left(x q^{-j}\right)^{n}\right\} \\
& =\sum_{k=0}^{\infty} \frac{(a, b, c ; q)_{k}}{(q, d, e ; q)_{k}} f^{k} \sum_{j=0}^{k}\left[\begin{array}{l}
k \\
j
\end{array}\right](-t)^{j}(x t ; q)_{\infty} q^{-n j}(-1)^{(k-j)} q^{(k-j)}\left(q^{-n} ; q\right)_{k-j} x^{n-(k-j)} \\
& \quad=x^{n}(x t, q)_{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{n} \frac{(a, b, c ; q)_{k+j}\left(q^{-n} ; q\right)_{k}(-q f / x)^{k}\left(-f t q^{-n}\right)^{j}}{(d, e ; q)_{k+j}(q ; q)_{k}(q ; q)_{j}} .
\end{aligned}
$$

Note that, setting $a=b=c=d=0$ and $f=d$ in (2.6) and then using equations (1.7), (1.2) and (1.4), we get Corollary 2.4. obtained by Zhang and Liu [14].

Setting $t=0$ in (2.6), we get the following corollary:
Corollary 2.4.1. We have

$$
{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \tag{2.7}\\
d, e
\end{array} ; q, f \theta\right)\left\{x^{n}\right\}=x^{n}{ }_{4} \phi_{3}\left(\begin{array}{c}
a, b, c, q^{-n} \\
d, e, 0
\end{array} ; q,-q f / x\right) .
$$

When $c=e=0$ and $f=d / a b$ in (2.7) we obtain equation (1.15) obtained by Li and Tan [8].

3. Applications in q-Identities

In this section, we use the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right)$ to give an extension to some wellknown q identities such as: Euler identities (1.6), (1.7), Ramanujan's sum (1.1), q-Chu-Vanermonde summation formula (1.9) and we give some other identities.

3.1 Extension of Euler Identities

Theorem 3.1. (Extension of Euler identity (1.7)). We have

$$
\sum_{n=0}^{\infty} \frac{q^{(n)} x_{2}^{n}}{(q ; q)_{n}}{ }_{4} \phi_{3}\left(\begin{array}{c}
a, b, c, q^{-n} \tag{3.1}\\
d, e, 0
\end{array} ; q,-q f / x\right)=(-x ; q)_{\infty}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f\right) .
$$

Proof.
Recalling
Euler identity,
we
have $\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^{n}}{(q ; q)_{n}}=(-x ; q)_{\infty}$.
Applying the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} q, f \theta\right)$ to both sides of the above equation with respect to the parameter x, we get

$$
\sum_{n=0}^{\infty} \frac{q^{(n)}}{(q ; q)_{n}}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} ; q, f \theta\right)\left\{x^{n}\right\}={ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{(-x ; q)_{\infty}\right\} .
$$

By using (2.7) and (2.4), we get

$$
\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^{n}}{(q ; q)_{n}}{ }_{4} \phi_{3}\left(\begin{array}{c}
a, b, c, q^{-n} \\
d, e, 0
\end{array} ; q,-q f / x\right)=(-x ; q)_{\infty}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f\right)
$$

Theorem 3.2. (Cauchy identity). We have

$$
\sum_{k=0}^{\infty} \frac{(a ; q)_{k}}{(q ; q)_{k}} x^{k}=\frac{(a x ; q)_{\infty}}{(x ; q)_{\infty}}
$$

Proof. Setting $b=c=e=0 \quad, \quad f=-x$, in equation (3.1), we get

$$
\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^{n}}{(q ; q)_{n}}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-n}, a \\
d
\end{array} ; q, q\right)=(-x ; q)_{\infty 2} \phi_{1}\left(\begin{array}{c}
a, 0 \\
d
\end{array} q,-x\right)
$$

By
(1.9),
we
get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}} x^{n}}{(q ; q)_{n}} a^{n} \frac{(d / a ; q)_{n}}{(d ; q)_{n}}=(-x ; q)_{\infty} \phi_{2}\left(\begin{array}{c}
a, 0 \\
d
\end{array} q,-x\right) \\
& \sum_{n=0}^{\infty} \frac{(d / a ; q)_{n} q^{\binom{n}{2}}(x a)^{n}}{(q, d ; q)_{n}}=(-x ; q)_{\infty} \sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q, d ; q)_{n}}(-x)^{n}
\end{aligned}
$$

Replacing

$$
(d, x) \quad \text { by } \quad(0,-x) \quad \text { in } \quad \text { above equation to have: }
$$

$$
\sum_{n=0}^{\infty} \frac{q^{\binom{n}{2}}(-x a)^{n}}{(q ; q)_{n}}=(x ; q)_{\infty} \sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} x^{n}
$$

by using Euler identity we obtain

$$
\frac{(x a ; q)_{\infty}}{(x ; q)_{\infty}}=\sum_{n=0}^{\infty} \frac{(a ; q)_{n}}{(q ; q)_{n}} x^{n}
$$

Setting $c=e=0, f=d / a b$ in (3.1) and then using the Hein's q-Gauss summation formula (1.8), we get the following corollary:

Corollary 3.2.1. We have

$$
\sum_{n=0}^{\infty} \frac{q^{(n}{ }_{2}^{n} x^{n}}{(q ; q)_{n}}{ }_{3} \phi_{2}\left(\begin{array}{c}
q^{-n}, a, b \\
d, 0
\end{array} q,-d q / a b x\right)=(-x ; q)_{\infty} \frac{(d / a, d / b ; q)_{\infty}}{(d, d / a b ; q)_{\infty}} .
$$

Theorem 3.3. (Extension of Euler identity (1.6)). We have

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{(q ; q)_{n}}{ }_{4} \phi_{3}\left(\begin{array}{r}
a, b, c, q^{-n} \tag{3.2}\\
d, e, 0
\end{array} ; q,-q f / x\right)=\frac{1}{(x ; q)_{\infty}}{ }_{4} \phi_{3}\left(\begin{array}{l}
a, b, c, 0 \\
\left.d, e, \frac{q}{x} ; q,-\frac{f q}{x}\right) . . .
\end{array}\right.
$$

Proof.
From
Euler
identity
(1.6),
we
have

Applying the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right) \quad$ with \quad respect \quad to $\quad x \quad$, we have

$$
\sum_{n=0}^{\infty} \frac{1}{(q ; q)_{n}}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{x^{n}\right\}={ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{\frac{1}{(x ; q)_{\infty}}\right\} .
$$

By using (2.7) and (2.3) the proof is complete .

3.2. Extension of Ramanujan's Sum

Theorem 3.4. (Extension of Ramanujan's sum(1.1)). We have

$$
\begin{align*}
\sum_{k=0}^{n} & \frac{(s ; q)_{n}}{(t ; q)_{n}} x^{n}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q,-f q^{n}\right) \\
& \left.=\frac{(q, s x, q / s x, t / s ; q)_{\infty}}{(t, q / s, x, t / s x ; q)_{\infty}}{ }_{4} \phi_{3}\binom{a, b, c, x}{d, e, q s x / t} q,-q f / t\right) \tag{3.3}
\end{align*}
$$

Proof. From Ramanujan's sum (1.1) we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(s ; q)_{n}}{(t ; q)_{n}} x^{n} & =\frac{(q, t / s, s x, q / s x ; q)_{\infty}}{(t, q / s, x, t / s x ; q)_{\infty}} \\
\sum_{n=0}^{\infty}(s ; q)_{n} x^{n} \frac{\left(t q^{n} ; q\right)_{\infty}}{(t ; q)_{\infty}} & =\frac{(q, t / s, s x, q / s x ; q)_{\infty}}{(t, q / s, x, t / s x ; q)_{\infty}} \\
\sum_{n=0}^{\infty}(s ; q)_{n} x^{n}\left(t q^{n} ; q\right)_{\infty} & =\frac{(q, t / s, s x, q / s x ; q)_{\infty}}{(q / s, x, t / s x ; q)_{\infty}}
\end{aligned}
$$

Applying the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} q, f \theta\right)$ to both sides of the above equation with respect to the parameter t, we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(s ; q)_{n} x^{n}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} ; q, f \theta\right)\left\{\left(t q^{n} ; q\right)_{\infty}\right\} \\
& \quad=\frac{(q, s x, q / s x ; q)_{\infty}}{(q / s, x ; q)_{\infty}}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} ; q, f \theta\right)\left\{\frac{(t / s, q)_{\infty}}{(t / s x ; q)_{\infty}}\right\} .
\end{aligned}
$$

Now by using the relation (2.4) and (2.2) we get (3.3).
Corollary 3.4.1. We have

$$
\sum_{n=0}^{\infty} \frac{(s ; q)_{n}}{(t ; q)_{n}}\left(t q^{n-m} ; q\right)_{m} x^{n}=\frac{(q, s x, q / s x, t / s ; q)_{\infty}}{(t, q / s, x, t / s x ; q)_{\infty}} \frac{(q s / t ; q)_{m}}{(q s x / t ; q)_{m}} x^{m}
$$

Proof. letting $a=q^{-m}, b=c=d=e=0$ and $f=-t$ in (3.3), we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(s ; q)_{n}}{(t ; q)_{n}} x^{n} \sum_{k=0}^{m} \frac{\left(q^{-m} ; q\right)_{k}}{(q ; q)_{k}}\left(t q^{n}\right)^{k}=\frac{(q, s x, q / s x, t / s ; q)_{\infty}}{(t, q / s, x, q s x / t ; q)_{\infty}}{ }_{2} \phi_{1}\left(\begin{array}{c}
q^{-m}, x \\
q s x / t
\end{array} q, q\right) \\
& \sum_{n=0}^{\infty} \frac{(s ; q)_{n}}{(t ; q)_{n}} x^{n} \frac{\left(t q^{n-m} ; q\right)_{\infty}}{\left(t q^{n} ; q\right)_{\infty}}=\frac{(q, s x, q / s x, t / s ; q)_{\infty}}{(t, q / s, x, t / s x ; q)_{\infty}} \frac{(q s / t ; q)_{m}}{(q s x / t ; q)_{m}} x^{m} \\
& \sum_{n=0}^{\infty} \frac{(s ; q)_{n}}{(t ; q)_{n}}\left(t q^{n-m} ; q\right)_{m} x^{n}=\frac{(q, s x, q / s x, t / s ; q)_{\infty}}{(t, q / s, x, t / s x ; q)_{\infty}} \frac{(q s / t ; q)_{m}}{(q s x / t ; q)_{m}} x^{m} .
\end{aligned}
$$

Setting $b=c=e=0, f=-x$, in (3.2) and using the q-Chu-Vandermonde summation formula (1.9), we get the following corollary:

Corollary 3.4.2. We have

$$
{ }_{2} \phi_{1}\left(\begin{array}{c}
d / a, 0 \\
d
\end{array} ; q, x a\right)=\frac{1}{(x ; q)_{\infty}}{ }_{3} \phi_{2}\left(\begin{array}{l}
a, 0,0 \\
d, q / x
\end{array} q, q\right) .
$$

3.3 Extension of the \boldsymbol{q}-Chu-Vandermonde Summation Formula

Theorem 3.5. (Extension of the q-Chu-Vandermonde summation formula (1.9)). We have

$$
\begin{align*}
& \sum_{j=0}^{n} \frac{\left(q^{-n}, x ; q\right)_{j}}{(q, y ; q)_{j}} q^{j}{ }_{4} \phi_{3}\left(\begin{array}{l}
a, b, c, q^{j} x \\
d, e, q x / y
\end{array} q,-q f / y\right) \\
& \quad=x^{n} \frac{(y / x ; q)_{n}}{(y ; q)_{n}}{ }_{4} \phi_{3}\left(\begin{array}{l}
a, b, c, x q^{2 n} \\
d, e, q^{1+n} x / y^{2}
\end{array} q^{2},-q f / y\right) . \tag{3.4}
\end{align*}
$$

Proof. Recalling the $q \quad$-Chu-Vandermonde summation formula

Applying the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} q, f \theta\right)$ with respect to y, we obtain

$$
\sum_{j=0}^{n} \frac{\left(q^{-n}, x ; q\right)_{j}}{(q ; q)_{j}} q^{j}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} ; q, f \theta\right)\left\{\frac{\left(y q^{j} ; q\right)_{\infty}}{(y / x ; q)_{\infty}}\right\}=x^{n}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{\frac{\left(y q^{n} ; q\right)_{\infty}}{\left(y / x q^{n} ; q\right)_{\infty}}\right\} .
$$

Then by using (2.2) the proof is complete .

4. Applications q-Integrals

In this section, we use the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right)$ to obtain an extension of the Askey beta integral (1.16), the Ramanujan's identity (1.17), , Ramanujans beta integral (1.18) and we give some other integrals formulas.

4.1. Extension of the Askey Beta Integral

Theorem 4.1. (Extension of the Askey Beta Integral (1.16)). We have

$$
\begin{align*}
& \int_{-\infty}^{\infty} \frac{(x t, y t ; q)_{\infty}}{(-w t, u t ; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c ; q)_{k+j}}{(d, e ; q)_{k+j}} \frac{\left(f y q^{-1-j} / w u\right)^{k}}{(q ; q)_{k}} \frac{\left(-u w q^{2} / x y ; q\right)_{j}}{(q ; q)_{j}}\left(\frac{-f y x t}{w u q^{2}}\right)^{j} q^{-\binom{j}{2}_{q} t} d_{q} t \\
& =\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{\infty}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}} \\
& \quad \times \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b, c ; q)_{k+j}}{(d, e ; q)_{k+j}} \frac{\left(f q^{-j} / w\right)^{k}}{(q ; q)_{k}} \frac{(-q w / x ; q)_{j}}{(q ; q)_{j}}\left(\frac{-f x}{u w q}\right)^{j} q^{-\binom{j}{2} .} \tag{4.1}
\end{align*}
$$

Proof. From Askey beta integral (1.16) we have:

$$
\int_{-\infty}^{\infty} \frac{(x t, y t ; q)_{\infty}}{(-w t, u t ; q)_{\infty}} d_{q} t=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}(-x y / u w q ; q)_{\infty}}
$$

multiplying both sides of the above equation by $(-x y / u w q ; q)_{\infty}$ and then applying the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right)$ with respect to x, we get

$$
\begin{aligned}
\int_{-\infty}^{\infty} & \frac{(y t ; q)_{\infty}}{(-w t, u t ; q)_{\infty}}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{(x t,-x y / u w q ; q)_{\infty}\right\} d_{q} t \\
& =\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{(x / u,-x / w ; q)_{\infty}\right\}
\end{aligned}
$$

Using equation (2.5) on both sides of above equation, we get the required result.

Note that setting $a=b=c=d=e=0$ and $f=c q^{(k+j-1) / 2}$ in (4.1) and then using Cauchy identity and Euler identity we get Theorem 6.3 obtained by Chen and Liu [4].

Corollary 4.4.1. We have

$$
\int_{-\infty}^{\infty} \frac{(x t, y t ; q)_{\infty}}{(-w t, u t ; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b ; q)_{k+j}}{(u ; q)_{k+j}} \frac{\left(y q^{-1-j} / a b\right)^{k}}{(q ; q)_{k}} \frac{\left(-u w q^{2} / x y ; q\right)_{j}}{(q ; q)_{j}}\left(\frac{-y x t}{a b q^{2}}\right)^{j} q^{-\binom{j}{2}} d_{q} t
$$

$$
\begin{align*}
& =\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}} \frac{(u / a, u / b, q)_{\infty}}{(u, u / a b ; q)_{\infty}} \\
& \times{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b,-\frac{q w}{x} \\
\frac{d q a b}{u}, 0
\end{array} q, \frac{x}{u}\right) . \tag{4.2}
\end{align*}
$$

Proof. Setting $c=e=0, d=u$ and $f=u w / a b$ in (4.1) we have

$$
\text { L.H.S. }=\int_{-\infty}^{\infty} \frac{(x t, y t ; q)_{\infty}}{(-w t, u t ; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b ; q)_{k+j}}{(u ; q)_{k+j}} \frac{\left(y q^{-1-j} / a b\right)^{k}}{(q ; q)_{k}} \frac{\left(-u w q^{2} / x y ; q\right)_{j}}{(q ; q)_{j}}\left(\frac{-y x t}{a b q^{2}}\right)^{j} q^{-\binom{j}{2}} d_{q} t .
$$

$$
\text { R.H.S. }=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}}
$$

$$
\times \sum_{j=0}^{\infty} \frac{(a, b,-q w / x ; q ; q)_{j}}{(q, u ; q)_{j}}\left(\frac{-x}{a b q}\right)^{j} q^{-j} \sum_{k=0}^{\infty} \frac{\left(a q^{j}, b q^{j} ; q\right)_{k}\left(u q^{-j} / a b\right)^{k}}{\left(q, q^{j} u ; q\right)_{k}}
$$

$$
=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}}
$$

$$
\times \sum_{j=0}^{\infty} \frac{(a, b,-q w / x ; q ; q)_{j}}{(q, u ; q)_{j}}\left(\frac{-x}{a b q}\right)^{j} q^{-j_{2}}{ }_{2} \phi_{1}\left(\begin{array}{c}
a q^{j}, b q^{j} \\
u q^{j}
\end{array} ; q, u q^{-j} / a b\right)
$$

$$
=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}}
$$

$$
\times \sum_{j=0}^{\infty} \frac{(a, b,-q w / x ; q ; q)_{j}}{(q, u ; q)_{j}}\left(\frac{-x}{a b q}\right)^{j} q^{-j} 2 \frac{(u / a, u / b ; q)_{\infty}}{\left(u q^{j}, u q^{-j} / a b ; q\right)_{\infty}} \quad \text { (by using (1.8)) }
$$

$$
=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}} \frac{(u / a, u / b, q)_{\infty}}{(u, u / a b ; q)_{\infty}}
$$

$$
\times \sum_{j=0}^{\infty} \frac{(a, b,-q w / x ; q)_{j}}{(q ; q)_{j}}\left(\frac{-x}{a b q}\right)^{j} q^{-j} 2 \frac{1}{\left(u q^{-j} / a b ; q\right)_{j}} \quad \text { (by using (1.2)) }
$$

$$
=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}} \frac{(u / a, u / b, q)_{\infty}}{(u, u / a b ; q)_{\infty}}
$$

$$
\times \sum_{j=0}^{\infty} \frac{(a, b,-q w / x ; q)_{j}}{(q ; q)_{j}}\left(\frac{-x}{a b q}\right)^{j} q^{-j_{2}} \frac{1}{(-1)^{j} q^{-j} 2\left(\frac{u}{a b q}\right)^{j}(q a b / u ; q)_{j}}
$$

$$
=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}} \frac{(u / a, u / b, q)_{\infty}}{(u, u / a b ; q)_{\infty}}
$$

$$
\times \sum_{j=0}^{\infty} \frac{(a, b,-q w / x ; q)_{j}}{(q, q a b / u ; q)_{j}}\left(\frac{x}{u)^{j}}\right.
$$

$$
=\frac{2(1-q)\left(q^{2} ; q^{2}\right)_{\infty}^{2}(w u, q / w u, x / u,-x / w, y / u,-y / u ; q)_{\infty}}{(q ; q)_{\infty}\left(w^{2}, u^{2}, q^{2} / w^{2} ; q^{2}\right)_{\infty}} \frac{(u / a, u / b, q)_{\infty}}{(u, u / a b ; q)_{\infty}}
$$

$$
\times{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b,-q w / x \\
q a b / u, 0
\end{array} ; q, x / u\right) .
$$

4.2. Extension of Ramanujan's Identity

Theorem 4.2. (Extension of the Ramanujan's Identity (1.17)). We have

$$
\int_{-\infty}^{\infty} \frac{e^{-x^{2}+2 m x}}{\left(s q e^{1 / 2} e^{2 i k x}, t q e^{1 / 2} e^{-2 i k x} ; q\right)_{\infty}}{ }_{4} \phi_{3}\binom{a, b, c, 0}{d, e, \frac{q^{1 / 2}}{s} e^{-2 k i x} ; q,-q \mathrm{f}} d x
$$

provided that $\max \{|s t q|,|q f / s|\}<1$.
Proof. Recalling Ramanujan's identity (1.17), then applying the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array}, q, f \theta\right)$ on both sides of the above equation with respect to the parameter s, we get

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{e^{-x^{2}+2 m x}}{\left(t q^{1 / 2} e^{-2 i k x} ; q\right)_{\infty}}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{\frac{1}{\left(s q^{1 / 2} e^{2 i k x} ; q\right)_{\infty}}\right\} d x \\
& \quad=\sqrt{\pi} e^{m^{2}}\left(-t q e^{-2 m k i} ; q\right)_{\infty}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q, f \theta\right)\left\{\frac{\left(-s q e^{2 m k i} ; q\right)_{\infty}}{(s t q ; q)_{\infty}}\right\} .
\end{aligned}
$$

Now by using equations (2.3) and (2.2) the proof is complete.

4.3 Extension The Ramanujan's Beta Integral

Theorem 4.3 (Extension The Ramanujan's beta integral (1.17))

$$
\begin{align*}
\int_{0}^{\infty} & t^{x-1} \frac{(-y t ; q)_{\infty}}{(t ; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b ; q)_{k+j}}{(d, e ; q)_{k+j}} \frac{\left(-f q^{-x-j}\right)^{k}}{(q ; q)_{k}} \frac{\left(q^{x+1} / y ; q\right)_{j}\left(-f t y q^{-x-1}\right)^{j}}{(q ; q)_{j}} q^{-\binom{j}{2}} d_{q} t \\
& =\frac{\pi}{\sin (\pi x)} \frac{\left(q^{1-x} ; q\right)_{\infty}}{\left(q, y q^{-x} ; q\right)_{\infty}}{ }_{3} \phi_{2}\left(\begin{array}{c}
a, b, c \\
d, e
\end{array} q,-f\right) . \tag{4.4}
\end{align*}
$$

Proof. Multiplying The Ramanujan's beta integral (1.17) by $\left(y q^{-x} ; q\right)_{\infty}$ we get

$$
\int_{0}^{\infty} t^{x-1} \frac{1}{(t ; q)_{\infty}}\left(-y t, y q^{-x} ; q\right)_{\infty} d t=\frac{\pi}{\sin (\pi x)} \frac{\left(q^{1-x} ; q\right)_{\infty}}{(q ; q)_{\infty}}(y ; q)_{\infty}
$$

Now applying the operator ${ }_{3} \phi_{2}\left(\begin{array}{c}a, b, c \\ d, e\end{array} ; q, f \theta\right)$ with respect to y, and using tow relations (2.5), (2.4) the proof is complete .

Setting $c=e, f=-d / a b$ in (4.4) and then using Hein's q-Gauss summation formula (1.8) we can obtain the following corollary:

Corollary 4.3.1. We have

$$
\begin{aligned}
& \int_{0}^{\infty} t^{x-1} \frac{(-y t ; q)_{\infty}}{(t ; q)_{\infty}} \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{(a, b ; q)_{k+j}}{(d ; q)_{k+j}} \frac{\left(d q^{-x-j} / a b\right)^{k}}{(q ; q)_{k}} \frac{\left(q^{x+1} / y ; q\right)_{j}\left(d t y q^{-x-1} / a b\right)^{j}}{(q ; q)_{j}} q^{-\binom{j}{2}} d_{q} t \\
& \quad=\frac{\pi}{\sin (\pi x)} \frac{\left(q^{1-x}, y ; q\right)_{\infty}}{\left(q, y q^{-x} ; q\right)_{\infty}} \frac{(d / a, d / b ; q)_{\infty}}{(d, d / a b ; q)_{\infty}} .
\end{aligned}
$$

References

[1] G.E. Andrews, On the foundations of combinatorial theory, V: Eulerian differential operators, Stud. Appl. Math., 50 (1971) 345-375.
[2] R. Askey, A q-beta integral associated with $B C_{1}$, SIAM J, Math anal, 13, (1982) 1008-1010.
[3] R. Askey, Two integrals of Ramanujan, Proc. Amer. Math.Soc, 85, (1982) 192-194.
[4] W.Y.C. Chen and Z.G. Liu, Parameter augmentation for basic hypergeometric series, I, Mathematical Essays in Honor of Gian-Carlo Rota, Eds., B.E. Sagan and R.P. Stanley, Birkhäuser, Boston, (1998) 111129.
[5] G. Gasper and M. Rahman, Basic Hypergeometric Series, $2^{\text {nd }}$ ed., Cambridge University Press, Cambridge, MA, 2004.
[6] F.H. Jackson, On q-definite integrals, Quart. J. Pure and Appl. Math., 41 (1910) 193-203.
[7] F.H. Jackson, Basic integration, Quart. J. Math. (Oxford), 2 (1951) 1-16.
[8] N. N. Li and W. Tan, Two generalized q-exponential operators and their applications, Advances in difference equations, 53 (2016) 1-14.
[9] S. Roman, More on the umbral calculus, with emphasis on the q-umbral caculus, J. Math. Anal. Appl., 107 (1985) 222-254.
[10] J. Thomae, Beiträge zur theorie der durch die Heinesche Reihe $1+\frac{\left(1-q^{a}\right)\left(1-q^{b}\right)}{(1-q)\left(1-q^{c}\right)} x+\cdots$ darstellbaren functionen, J. Reine Angew. Math., 70 (1869) 258-281.
[11] J. Thomae, Les séries Heineénnes supérieures, ou les séries de la forme $1+\frac{\left(1-q^{a}\right)\left(1-q^{b}\right)}{(1-q)\left(1-q^{c}\right)} x+$ \cdots, Annali di Matematica Pura ed Applicat., 4 (1870) 105-138.
[12] Z. Z. Zhang and J. Wang, Two operator identities and their applications to terminating basic hypergeometric series and q-integrals, J. Math. Anal. Appl., 312 (2005) 653-665.
[13] Z. Z. Zhang and J. Z. Yang, Finite q-exponential operators with two parameters and their applications, ACTA MATHEMATICA SINICA, Chinese Series, 53 (2010) 1007-1018.
[14] Z. Zhang and M. Liu, Applications operator identities to the multiple q-binomial theorem and q-Gauss summation theoren operators, DISCRETE MATHEMATICS , $\mathbf{3 0 6}$ (2006) 14241437.

