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Abstract

In this paper, we focus on localization of certain types of submodules such as pure submodules,
idempotent submodules, multiplication and § —multiplication submodules and we try to obtain some relations
between these submodules and their localizations. Also, we prove that under certain conditions certain properties
of modules can be transferred from the modules to their localizations and conversely at multiplicative systems
that isolate these modules and also isolate the rings on which these modules are defined.

1. Introduction

In 2004, M. M. Ali and D. J. Smith [1], have studied pure submodules of multiplication modules and
obtained some properties of them and also they studied the relations of pure submodules with some other
types of submodules. In 2010, L. H. Jahromi and A. Khaksari [6] have studied weakly pure submodules of
mu ltip lication modules, which are generalizations of pure submodules and they proved several properties
of this type of submodules. Also, in 2011, A. Khaksari [7], has studied weakly pure submodules of
mu ltip lication modules, and in 2014, B. N. Shihab, H. Y. Khalaf and L. S. Mahmood [3], have studied
purely and weakly purely cancellation modules and they proved some properties of each one and also
obtained some relations between them. The purpose of this paper is to study the effect of localization on
certain types of submodules such as pure submodules, almost pure submodules, locally pure submodules,
idempotent submodules, multiplication and § —multiplication submodules and we try to organize the
relations between them.

Throughout this paper, R is a commutative ring with identity and M is a left R — module, unless
otherwise stated. Let @ # S € R, then S'is called a multiplicatively system if 0 ¢ Sand a,b € S implies
thatab € S [8]. If Siis a multiplicatively system in R, then we denote the localization of R at S by A (or
S~1A[8]), which is Ag = {f: a€ A,s € S}[8]. If Pis aprime ideal of R, then one can easily get thatR \ P
is a multiplicatively system in R and in this case, we denote the localization of R at R\ P by R, so that
Ap = {%: a € A,p & P}. Asubmodule K of M is called a pure submodule of M, if AK = KNAM, for every

ideal A of R [2]. If N is a submodule of M, then S,,(N) = {r € R:rx € N, for some x € M \ N}and if A
is an ideal of R, then S;(4) = {r € R:ra € A, for some a & A}and A is called a primal ideal of R, if
Sk(A), forms an ideal of R, which is always a prime ideal of R [4]. For a submodule K of M, (K:M) =
{r e R:vM < K}and Ann(M) = (0: M) = {r € R:vM = 0}. A submodule N of M is called an idempotent
submodule of M if N = [N: MIN [1] and it is called a multiplication submodule of M if NNK = [K: NIN
for every submodule K of M [1]. An ideal A of R is called a pure ideal of R if ANB = AB for every ideal
B of R [3], equivalently A is a pure ideal of R if and only if Aa = Ra for all a € A[1]. For a commutative
ring R with identity, J (R), is defined as the intersection of all maximal ideals of R [9].
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Theorem 2.1. Let M be an R —module and N be a submodule of M. Then N is pure if and only if N, is a
pure submodule of M, for every prime ideal P of R.

Proof. Let N be pure and P be a prime ideal of R. Let A be an ideal of R, then by [5, Proposition 2.16],
A = A, for some ideal A of R. As N is pure, we have AN = NNAM, then by [5, Corollary 2.3], we have
(AN)p = ApN,, so that we get AN, = A,Np, = (AN), = (NNAM), = N,NUAM), = NoN(4pM,) =
NpN(AM,), sothat Np is a pure submodule of M,.

Conversely, let N be almost pure and A be any ideal of R. Then, for any prime ideal P of R and as N is
almost pure, we have N is pure and as A, is an ideal of R, we get A, N, = Np,NApMp, this gives (AN), =
ApNp = NpNApM, = NpyN(AM) , = (NNAM)p, so that AN = NNAM, so that N is a pure submodule of
N.

Proposition 2.2. Let M be an R —module and N be a submodule of M. If N is almost pure, then N, is a
pure submodule of M, for every maximal ideal P of R.

Proof. If P is a maximal ideal of R, then it is prime. By Theorem 2.1, we get N, is a pure submodule of
Mp.

Proposition 2.3. Let M be an R —module and N a submodule of M. If Sis a multiplicative system in R
suchthat SNS,, (N) = @, then [N: M]5 = [Ng: M].

Proof. Let f € [N:M]g, where r € R,s € S, thengr € [N:M] for some q € S, this givesqrM S N. Then

we get =My =M =£Ms = (qrM)s € Ns, which gives = € [Ns:M] . Hence, we get [N:M]; <

qs
[Ng:Mg]. Next, supposethat € [Ng: Mq], then = MS Ng. Now, Iet meM, then— —;— € N, so we get
qrm € N, for some g€ S. If rm & N, then We get q €Sy, (N), so that SﬂSM(N) # @, which is a
contradiction, so thatrm € N, so we get rM < N, that is r € [N: M], this implies thatS € [N: M]s. Hence
[Ng:Mg] € [N:M],and thus we have [N: M]g = [Ng: Mg].
Definition 2.4. Let M be an R —module and N a submodule of M. We call a prime ideal P of R not prime
to N if S,,(N) € P and we denote the set of all prime ideals P of R that are not prime to N by S = {P: P
is a prime ideal of R suchthatS,,(N) < P}.
Corollary 2.5. Let M be an R —module and N a submodule of M, then [N: M], = [Np: M, ] forall P € S7.
Proof. Let P € S§, so that P is a prime ideal of R such thatS, (N) € P. Put S = R\P, which is a
multiplicative systemin R and SNS,,(N) € (R\P)NP = @, sothat SNS,,(N) =@
Hence, by Proposition 2.3, we get [N: M], = [N: M]g = [Ng:M;] = [Np: M,].

Next, we prove that under certain conditions localization of idempotent submodules at multiplicative
systems are also idempotent.
Proposition 2.6. Let M be an R —module, N a submodule of M and S a multiplicative system in R such
thatSNS, (N) = @. If N is idempotent, then N is idempotent.
Proof. As N is idempotent, we have N = [N:M]N, then by Proposition 2.3, we get Ng = (IN: MIN) =
[N:M]sNs = [Ng: Ms]N;.

As a corollary to the above proposition we prove that localization of an idempotent submodule N at
prime ideals which are not prime to N are also idempotent.
Corollary 2.7. Let M be an R —module. If N is an idempotent submodule of M, then N, is an idempotent
submodule of M, forall P € Sf; .
Proof. Let P €S}, so that P is a prime ideal of R such thatS,(N) €P. Put S =R\P, which is a
mu ltip licative systemin R and SNS,,(N) € (R\P)NP = @, so thatSNS,,(N) = @. Hence, by Proposition
2.6, we get N, is an idempotent submodule of Mp.

In the following result, we show that for an R —module M and a multiplicative system S of R each
submodule of M is a localization of a unique submodule of M.
Proposition 2.8. .Let M be an R —module and S a multiplicative system in R. If K is a submodule of Mg,
then there exists a unique submodule K of M for which K = K, and SNS,,(K) = 0.

Proof. Let s € S be any element (this is possible since S # @) and K = {x € M:fe K}. To showK is a
submodule of M. AsOeMand9 € K, so that 0 € K. Hence, ® # K € M. Now, letr € Rand x,y € K,

xy x

thenx,yeMand——eK then —;——EK Also we have € Rs and so————EK then——
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SS==2€K, so thatrx € K. Hence K is a submodule of M. To show K = K. Let ~ € K, where

SS S S SS
X €M, tES, then;ﬁ:ff:%el?, so that x € K and then > € K;. Hence, K € K;. Next, let ~ € K,
where x € M,t € S, then gx € K, for some q €S, so thatqs—er?, then%zfg%zts—q% € K, so that

Ky € K.Hence K = K. To show SN S, (K) = @.1f SNS,,(K) # @, then there exists t € SNS,,(K), so that

t € Sand tx € K, for some x ¢ K, this givests—xe K and fe K. On the other hand, we have ;—‘= f:i:
%ts—xe K, which is a contradiction, so that SNS,,(K) = @. Next, suppose that L is another submodule of M,
for which K = Lg and SNS,,(L) = @. To show L = K. Then we have L; = K;. Let x € L, then f EK,=K,
sothat x € K. Hence, L € K. Conversely, let x € K, then f € K =K, = Lg,sothatgx € L for
someq € S. Ifx ¢ L, then q € S,,(L) and this implies that SNS,, (L) # @ which is a contradiction, so that
x €Landthus K€ L.Hence L=K ={x € M:;—C € K; = Lg} and so the existence of a such submodule is
unique.

Corollary 2.9. Let M be an R —module and P a prime ideal of R. If K is a submodule of M, then there
exists a unique submodule K of M suchthat K = K, and S,,(K) < P.

Proof. If we take S = R\P, then Sis a multiplicative system in R and since SNS,,(K) = @ if and only if
Sy (K) € P, sotheresult follows directly from Proposition 2.8.

Remark 2.10. (1) Since 1 € R\P = S,so one can take s = 1in Proposition 2.8 and then the submodule K
canbetakenas K = {x € M:f €K}

(2) If we consider R as an R —module, then from Proposition 2.8 and Corollary 2.9, we get the following
corollaries.
Corollary 2.11. Let R be a commutative ring with identity and S a multiplicative systemin R. If Ais an
ideal of Ry, then there exists a unique ideal A of R for which 4 = Ag and SNSL(4) = @.
Corollary 2.12. Let R be a commutative ring with identity and P a prime ideal of R. If A is an ideal of R},
then there exists a unique ideal A of R for which 4 = A, and S, (4) € P.

Now we prove that localization of multiplication submodules of an R —module at multiplicative
systems are also multiplication submodules.
Proposition 2.13. Let M be an R —module and S a multiplicative system in R. If N is a multiplication
submodule of M, then N is a multiplication submodule of M.
Proof. Let K be any submodule of M, then by Proposition 2.8, K = K for the submodule K = {x €
M:f € K} of M, where s € Sand SNS,,(K) = @. Since N is a multiplication submodule of M, soONNK =
[K: N]N, then by Proposition 2.3, we get [K:N]s = [Ks: Ng], so that NgNK = NsNKs = (NNK) s =
([K: NIN)g = [K:NIgNs = [Kg:NgINg = [K:Ng]Nsand this means that Ngis a multiplication submodule
of M.

As a corollary to the above result we prove that localization of submodules of an R —module at prime
ideals are also multiplication submodules.
Corollary 2.14. Let M be an R —module and P a prime ideal of R. If N is a multiplication submodule of
M, then N is a multiplication submodule of M.
Proof. The result follows directly by taking S = R\P in Proposition 2.13.

Now we introduce the following definitions.
Definition 2.15. Let M be an R —module. We define S/® = {N: N < M and S,,(N) € J(R)}.
Definition 2.16. Let M be an R —module. We call a submodule N of M an § —multiplication submodule of
M if NNK = [K: N]N for every K € §7®,

Now, we prove that locally multiplication submodules are § —multiplication.
Proposition 2.17. Let M be an R —module. If N is a submodule of M such that N, is a multiplication
submodule of M,, for every prime ideal P of R, then N is an § —multiplication submodule of M.
Proof. Let P be any maximal ideal of R, so it is prime and hence N, is a multiplication submodule of M.
Let K € S® that means K < M and S,,(K) € J(R) € P,sothatP € Sf. Then, K, is a submodule of M,
and as Npis a multiplication submodule of M,, we get NpoNK, = [Kp: Np]Npand since P € S¢, so by
Corollary 2.5, we get (NNK)p = NpNKp = [Kp:NpINp, = [K:N1,N, = ([K:NIN)p, so we get NNK =
[K: NIN. Hence, N is an § —multiplication submodule of M.
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Now we prove that localization of pure ideals of a ring at multiplicative systems are also pure.
Proposition 2.18. Let R be a commutative ring with identity and S a multiplicative systemin R. If A is a
pure ideal of R, then Ay is a pure ideal of Ry.

Proof. Let B be any ideal of R, so by Corollary 2.11, there exists a unique ideal B of R for which B = B
and SNS;(B) = @. As A is pure we have ANB = AB, which implies that A;NB = A;NBs = (ANB)g =
(AB) y = AgBg = AgB. Hence, Ag is a pure ideal of Ry.

As a corollary to the above result we prove that localization of pure ideals of a ring at prime ideals are
also pure.

Corollary 2.19. Let R be a commutative ring with identity and P a prime ideal of R. If A is a pure ideal of
R, then A, is a pure ideal of Rp.

Proof. The proof follows directly by putting S = R\P in Proposition 2.18.

Examples 2.20. (1) Consider the ring Z,. Clearly S = {1,5}is a multiplicative system in Z,. Then, we
have S, (0) = {0,2,3,4}, S, ({0,2,4}) ={0,2,4}, S,,({0,3}) ={0,3} and 5, (Z,) = ¢ and it is clear
that SNS;, (0) =@ = SN, ({0,2,4}) = NS, ({0,3) =5NS, (Z,) , that means SNS, (A) =@ for
every ideal A of Z.. But, if we take the multiplicative system S = {1, 3} in Z, then we see that for the ideal
A = {0,3}, we have S, ({0,3}) = {0,3}and that SNS, (4) = {3} # 0.

(2) Consider the ring of integers Z. Clearly S = {1} and S = {—1,1} are multiplicative systems in Z. For
S = {1}, suppose that there exists an ideal A of Z for which SNS,(4) # @, then1 € S,(4), which implies
that 1x € A for some x ¢ Awhich is a contradiction, so that {1}NS,(4) = @ for every ideal A of Z. For
S ={—-1,1}, suppose that there exists an ideal A of Z for which SNS;(4) # @, then —1 € S,(A) or
1 € S,;(A) (or the both). If —1 € S,(A), then —1x € Afor some x ¢ A, then we get —x € A, which gives
x € A that is a contradiction and if 1 € S,(A4), then by using the same technique we get a contradiction.
Hence {—1,1}NS,(4) = @ for every ideal A of Z, that means for S = {1} and S = {—1,1}, we have
SNS,(4) = ¢ for every ideal A of Z.

(3) Consider the ring Z,¢. The ideals of Z,, are {0}, < 2 >={0,2,4,6,8,10,12,14}, < 4 >= {0,4,8,12},
< 8>={0,8}and Z,,. Now we have S, (0) =1{0,2,4,6,8,10,12,14} =< 2>,S, (<2>)=<2>,
Sz(<4>)=1{0,8=<8> and S2s(Z16) =0 : Clearly we have
{1,3,5,7,9,11,13,15}N{0, 2,4, 6,8, 10, 12, 14} = @. Next, let S be any multiplicative systemin Z,, then
sn{o,2,4,6,8,10,12,14} = @, on the contrary suppose that SN{0,2,4,6,8,10,12,14} # @, then we
have one of the following cases:

() 0 € S, which is a contradiction, since 0 & S.

(i) 2 € S, then 0 = 2* € S which is a contradiction, sothat2 & S.

(iii) 4 € S, then 0 = 42 € S which is a contradiction, sothat4 ¢ S.

(iv) 6 € S, then 0 = 6* € S which is a contradiction, sothat 6 ¢ S.

(v) 8 € S, then 0 = 8% € S which is a contradiction, sothat 8 ¢ S.

(vi) 10 € S, then0 = 10* € S which is a contradiction, sothat 10 ¢ S.

(vii) 12 € S, then 0 = 122 € S which is a contradiction, sothat 12 ¢ S.

(vii) 14 € S, then 0 = 14* € S which is a contradiction, sothat 14 & S.

Hence, SN{0,2,4,6,8,10,12,14} = @ for every multiplicative system S in Z,, and this means that if S is
any multiplicative system in Z,,, then S {1,3,57,9,11,13,15} . Next, we have SNS, (0) €
{1,3,5,7,9,11,13,15}Nn10, 2, 4,6,8,10, 12, 14} = 9,

SNS,, (<2>)<c{1,3,57,9,11,13,15}n{0,2,4,6,8,10,12, 14} = ¢,

SNS,, (<4 >)€{1,3,57,9,11,13,15}n{0,2,4,6,8,10,12, 14} = ¢ and

SNSy, . (Zy6) €{1,3,5,7,9,11,13,15}N@ = @. Hence, we have SNS,  (4) = @ for every multiplicative
systemS in Z,, and every ideal A of Z .

In view of theabove examples we introduce the following definition.

Definition 2.21. Let R be a commutative ring with identity and M an R —module. If Sis a multiplicative
system in R, then we say S separates R (resp. M) if SNS;(4) = @ (resp. SNS,,(N) = @) for every ideal A
of R (resp. every submodule N of M) and we denote the set of all multiplicative systems in R that separate
R by S ={S:S is a multiplicative system separates R} and the set of all multiplicative systems in R that
separate M by S, = {S:S is a multiplicative systemseparates M}.
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It is known that if P is a prime ideal of R, then S = R\P is a multiplicative systemin R so in this case

we make the following definition.
Definition 2.22. Let R be a commutative ring with identity and M an R —module. If P is a prime ideal of
R. We say P isolates R (resp. M) if S,(4) € P (resp. S,,(N) € P) for every ideal A of R (resp. every
submodule N of M) and we denote the set of all multiplicative systems in R that isolate R by S, = {R\P: P
is a prime ideal isolates R} and the set of all multiplicative systems in R that isolate M by S,, = {R\P: P is
a prime ideal isolates M}.

Note that, in the last definition if A is the prime ideal P of R, that is if A = P, then we have S,(4) =
Sg(P) = P c P, so the condition S;(4) c Pis trivially satisfied when the ideal A is the prime ideal P
itself.

It is known that, if the localizations of two ideals of a ring at a multiplicative system are equal then the
ideals need not be equal as we see in the following example.

Example 2.23. Consider the ring Z,,. Take the ideals A = {0,2,4,6,8,10} and B = {0, 4, 8} of Z,,. Now
2

let S = {1,2,4,8} which is a multiplicative system of Z,,. It is easy to check that Ag = {% 'I} = B, but

clearly A + B.

Now, we prove that if the localizations of two ideals of a ring at a certain type of multiplicative systems
are equal (in fact that multiplicative systems which isolate R), then the ideals are also equal.
Proposition 2.24. Let R be a commutative ring with identity. Let A and B be two ideals of R. If S € S and
Ag = Bg, then A = B. In particular, if A; = 0, then4 = 0.
Proof. SinceS € S, SO thatS separates R, then SNS(A) = @ = SNSz(B). AsS # @, lets€ S. Let a €
A, then —e Bs, thenta € B, for some t € S. If a & B, then t € S;(B), this implies that SNS,(B) # 0,
which is a contradiction, so that a € B. Hence A € B and as SﬂSR(A) = @, by the same technique we get
B € A. Hence, A = B. For the second part, let a € 4, then ; € Ag = 0, so thatta = 0 for some t € S. If

a # 0,thent € S,(0), sothat SNSz(0) # @, which is a contradiction, so thata = 0. Hence, 4 = 0.
Corollary 2.25. Let R be a commutative ring with identity. Let A and B be two ideals of R. If P € S and
Ap = Bp, then A = B. In particular, if A, = 0, then A = 0.
Proof. The proof follows directly by taking S = R\ P in Proposition 2.24.

As in the case of rings we prove the same results of Proposition 2.24 and Corollary 2.25, for the
modules.
Proposition 2.26. Let M be an R —module. Let N and K be two submodules of M. If S € S, and N = K,
then N = K. In particular, if Ng = 0,then N = 0.
Proof. Since S € S,,, so that S separates M, then we have SNS,,(N) = @ = SNS,,(K). AsS # @, let s €
S. Let a € N, then §E Ks, then ta € K, for some t € S. If a ¢ K, then t € S,,(K), this implies that

SNSy,(K) # @, which is a contradiction, so thata € K. Hence N € K and as SﬂSM(N) = @, by the same
technique we get K € N. Hence, N = K. For the second part, let a € N, then= € Ns =0, sothattx =0

for some t € S. If x # 0, thent € S,,(0), so that SNS, (0) # @, which is a contradlctlon so that x = 0.
Hence, N = 0.
Corollary 2.27. Let M be an R —module. Let N and K be two submodules of M. If P € §,; and N, = K,
then N = K. In particular, if N, = 0,then N = 0.
Proof. The proof follows directly by taking S = R\ P in Proposition 2.26.

Now we prove that, for a ring R and a multiplicative system S of R, every pure ideal of R is a
localization of a unique pure ideal of R.
Proposition 2.28. Let R be a commutative ring with identity and S € S. If A is a pure ideal of R, then
there exists a unique pure ideal 4 of R suchthatA = A;.
Proof. By Corollary 2.11, there exists a unique ideal A of R such that A = Ag and SNSz(4) = @. To show
A'is pure, let B be any ideal of R, then B is an ideal of Rg and as Ay is pure we have A;NBs = AgBq, this
gives (ANB)g = (AB)g and since S € Sz, so by Proposition 2.24, we get ANB = AB. Hence, A is a pure
ideal of R.
Corollary 2.29. Let R be a commutative ring with identity and P € S;. If A is a pure ideal of R,, then
there exists a unique pure ideal A of R suchthatA4 = A4,.
Proof. The proof follows directly by taking S = R\ P in Proposition 2.28.
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Next we prove that, for an R —module M and a multiplicative system S which isolates M, each
idempotent submodule of M is a localization of a unique idempotent submodule of M.
Proposition 2.30. Let M be an R —module and S € §,,. If N is an idempotent submodule of Mg, then there
exists a unique idempotent submodule N of M suchthat N = Ng.
Proof. By Corollary 2.8, there exists a unique submodule N of M such that N = Ng and SNS,,(N) = @. To
show N is idempotent. By using Proposition 2.3, we have [ N: M] = [Ng:M;] = [N:M];. As N is
idempotent, we have Ny = N = [N: M{]N = [N:M]¢Ng= (IN:MIN),, then as S € S,,, by Proposition
2.27, we get N = [N:M]N. Hence, N is anidempotent submodule of M.
Corollary 2.31. Let M be an R —module and P € S,,. If N is an idempotent submodule of M,, then there
exists a unique idempotent submodule N of M suchthat N = N,.
Proof. The proof follows directly by taking S = R\ P in Proposition 2.30.

Now we prove that, for an R —module M and a multiplicative systemS in R that isolates M, every pure
submodule of M is a localization of a unique pure submodule of M.
Proposition 2.32. Let M be an R —module and S € §,,. If N is a pure submodule of Mg, then there exists a
unique pure submodule N of M suchthat N = Ng.
Proof. By Corollary 2.8, there exists a unique submodule N of M such that N = N and SNS,,(N) = @. To
show N is pure. If 4 is any ideal of R, then Ag is an ideal of R; and as N is pure we get AgNg = NgNAgMs,
this implies that (AN); = (NNAM);. Since S € S, by Proposition 2.26, we get AN = NNAM. Hence N
is a pure submodule of M.
Corollary 2.33. Let M be an R —module and P € §,,. If N is a pure submodule of M,, then there exists a
unique pure submodule N of M suchthat N = N,.
Proof. The proof follows directly by taking S = R\ P in Proposition 2.32.
Proposition 2.34.Let M be an R —module and S € §,,. If ann(M) = 0, then ann (M) = 0.
Proof. Let f € ann (M), where r € R,s € S. Then, fMS = 0and by [5, Corollary 2.9], we have EMS =
(rM)s, this gives (rM); = 0, and by Proposition 2.26, we get rM = 0, so thatr € ann (M) = 0, that is
r = 0, which givesf = 0. Hence, ann(M) = 0.
Corollary 2.35. Let M be an R —module and P € S,,. If ann (M) = 0, then ann(M,) = 0.
Proof. By taking S = R\P in Proposition 2.34, the proof follows directly.
Proposition 2.36. Let M be an R —module and S € S;. If ann(M,) = 0, then ann (M) = 0.
Proof. AsS = @, let s € S. Let r € ann (M), then rM = 0, this gives (rM ), = 0 and by [5, Corollary 2.9],
we havefMS = (rM), so that EMS = 0. Hence ; € ann (M) = 0, S0 thatf =0. AsSNSz(0) = @, we
getr = 0,sothat ann (M) = 0.
Corollary 2.37. Let M be an R —module and P € ;. If ann(M,) = 0, then ann(M) = 0.
Proof. By taking S = R\P in Proposition 2.36, the proof follows directly.
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