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1. Introduction 

     In 2004, M. M. A li and D. J. Smith [1], have studied pure submodules of mult iplication modules and 

obtained some properties of them and also they studied the relations of pure submodules with some other 

types of submodules. In 2010, L. H. Jahromi and A. Khaksari [6] have studied weakly  pure submodules of 

multip licat ion modules, which are generalizations of pure submodules and they proved several properties 

of this type of submodules. Also, in 2011, A. Khaksari [7] , has studied weakly pure submodules of 

multip licat ion modules, and in 2014, B. N. Shihab, H. Y. Khalaf and L. S. Mahmood [3], have studied 

purely and weakly purely cancellation modules and they proved some propert ies of each one and also 

obtained some relations between them. The purpose of this paper is to study the effect of localizat ion on 

certain types of submodules such as pure submodules, almost pure submodules, locally pure submodules, 

idempotent submodules, multip lication and   mult iplication submodules and we try  to organize the 

relations between them. 

     Throughout this paper,   is a commutative ring with identity and   is a left   module, unless 

otherwise stated. Let      , then   is called a mult iplicatively  system if     and       implies  

that      [8]. If   is a mult iplicatively system in  , then we denote the localizat ion of   at   by    (or 

     [8]), which is    *
 

 
        + [8]. If   is a prime ideal of  , then one can easily get that     

is a mult iplicatively  system in   and in  this case, we denote the localizat ion of   at     by   , so that 

   *
 

 
        +. A submodule   of   is called  a pure submodule of  , if        , fo r every 

ideal   of    [2]. If   is a submodule of  , then   ( )  *        , for some      + and if   

is an ideal of  , then   ( )  *        , for some    + and   is called a primal ideal of  , if 

  ( ), forms an ideal of  , which is always a prime ideal of   [4]. For a submodule   of  , (   )  
*        + and    ( )  (   )  *        +. A submodule   of   is called an idempotent 

submodule of   if   ,   -  [1] and it is called a mult iplication submodule of   if     ,   -  

for every submodule   of   [1]. An ideal   of   is called a pure ideal of    if        for every ideal 

  of   [3], equivalently   is a pure ideal of   if and only if       for all     [1]. For a commutative 

ring   with identity,  ( )   is defined as the intersection of all maximal ideals of   [9].  

 

 

      

Abstract 

           In this paper, we focus on localization of certain types of submodules such as pure submodules, 

idempotent submodules, multiplication and 𝒮  multiplication submodules and we try to obtain some relations 
between these submodules and their localizations. Also, we prove that under certain conditions certain properties 

of modules can be transferred from the modules to their localizations and conversely at multiplicative systems 
that isolate these modules and also isolate the rings on which these modules are defined. 
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2. The Main Results  

Theorem 2.1. Let   be an   module and   be a submodule of  . Then   is pure if and only if    is a 

pure submodule of    for every prime ideal   of  .  

Proof. Let   be pure and   be a prime ideal of  . Let  ̅ be an ideal of   , then by [5, Proposition 2.16], 

 ̅     for some ideal   of  . As   is pure, we have        , then by [5, Coro llary 2.3], we have 

(  )      , so that we get  ̅        (  )  (    )     (  )     (    )  
   ( ̅  ), so that    is a pure submodule of   .  

Conversely, let   be almost pure and   be any ideal of  . Then, for any prime ideal   of   and as   is 

almost pure, we have    is pure and as    is an ideal of  , we get             , this gives (  )  
                (  )  (    ) , so that         , so that   is a pure submodule of 

 . 

Proposition 2.2. Let   be an   module and   be a submodule of  . If   is almost pure, then    is a 

pure submodule of    for every maximal ideal   of  . 

Proof. If   is a maximal ideal of  , then it is prime. By Theorem 2.1, we get    is a pure submodule of 

  . 

Proposition 2.3. Let   be an   module and   a submodule of  . If   is a multip licat ive system in   

such that     ( )   , then ,   -  ,     -. 

Proof. Let 
 

 
 ,   - , where        , then    ,   - for some    , this gives      . Then 

we get 
 

 
   

 

 

 

 
   

  

  
   (   )    , which gives 

 

 
 ,     - . Hence, we get ,   -  

,     -. Next, suppose that 
 

 
 ,     -, then 

 

 
     . Now, let    , then 

  

  
 
 

 

 

 
   , so we get  

     , fo r some    . If     , then we get      ( ) , so that     ( )   , which is a 

contradiction, so that     , so we get     , that is   ,   -, this implies that 
 

 
 ,   - . Hence 

,     -  ,   -  and thus we have ,   -  ,     -. 
Definition 2.4. Let   be an   module and   a submodule of  . We call a prime ideal   of   not prime 

to   if   ( )    and we denote the set of all prime ideals   of   that are not prime to   by   
  *    

is a prime ideal of   such that   ( )   +. 
Corollary 2.5. Let   be an   module and   a submodule of  , then ,   -  ,     - for all     

 . 

Proof. Let      
 , so that    is a p rime ideal of   such that   ( )   . Put      , which  is a 

multiplicative system in   and     ( )  (   )    , so that     ( )   . 

Hence, by Proposition 2.3, we get ,   -  ,   -  ,     -  ,     -. 
     Next, we prove that under certain conditions localization of idempotent submodules at multiplicative 

systems are also idempotent.   

Proposition 2.6. Let   be an   module,   a submodule of   and   a multip licative system in   such 

that     ( )   . If   is idempotent, then    is idempotent. 

Proof. As   is idempotent, we have   ,   - , then by Proposition 2.3, we get    (,   - )  
,   -    ,     -  . 
     As a corollary to the above proposition we prove that localization of an idempotent submodule   at  

prime ideals which are not prime to   are also idempotent.  

Corollary 2.7. Let   be an   module. If   is an idempotent submodule of  , then    is an idempotent 

submodule of    for all     
 . 

Proof.  Let     
 , so that    is a prime ideal of   such that   ( )   . Put      , which is a 

multip licat ive system in   and     ( )  (   )    , so that     ( )   . Hence, by Proposition 

2.6, we get    is an idempotent submodule of   . 

     In the following result, we show that for an   module   and a multiplicative system   of   each 

submodule of    is a localization of a unique submodule of  .  

Proposition 2.8. .Let   be an   module and   a multip licative system in  . If   ̅ is a submodule of   , 

then there exists a unique submodule   of   for which  ̅     and     ( )   . 

Proof. Let      be any element (this is possible since    ) and   *    
 

 
  ̅+. To show   is a  

submodule of  . As     and 
 

 
  ̅, so that    . Hence,      . Now, let     and      , 

then       and 
 

 
 
 

 
   ̅ , then 

   

 
 
 

 
 
 

 
  ̅. Also we have 

 

 
    and so 

  

  
 

 

 

 

 
  ̅ , then 
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  ̅, so that     . Hence   is a submodule of  . To show  ̅    . Let 

 

 
  ̅, where 

       , then 
 

 
 

 

 

 

 
 
 

 

 

 
  ̅, so that     and then 

 

 
   . Hence,  ̅    . Next , let 

 

 
   , 

where        , then     , for some    , so that 
  

 
  ̅ , then 

 

 
 

 

 

 

 

 

 
 

 

  

  

 
  ̅ , so that  

    ̅. Hence  ̅    . To show     ( )   . If     ( )   , then there exists       ( ), so that 

    and     , for some    , this gives 
  

 
  ̅  and 

 

 
  ̅. On the other hand, we have 

 

 
 

 

 

 

 
 

 

 

  

 
  ̅, which is a contradiction, so that     ( )   . Next, suppose that   is another submodule of  , 

for which  ̅     and     ( )   . To show    . Then we have      . Let    , then 
 

 
     ̅, 

so that    . Hence,    .                      Conversely, let    , then 
 

 
  ̅       , so that      for 

some    . If    , then     ( ) and this implies that     ( )    which is a contradiction, so that 

    and thus    . Hence     *    
 

 
      + and so the existence of a such submodule is  

unique. 

Corollary 2.9. Let   be an   module and   a prime ideal of  . If   ̅ is a submodule of   , then there 

exists a unique submodule   of   such that  ̅     and   ( )   . 

Proof. If we take      , then   is a multip licat ive system in   and since     ( )    if and only if 

  ( )   , so the result follows directly from Proposition 2.8. 

Remark 2.10. (1) Since        , so one can take     in  Proposition 2.8 and then the submodule   

can be taken as   *    
 

 
  ̅+. 

(2) If we consider   as an   module, then from Proposition 2.8 and Corollary 2.9, we get the following 

corollaries. 

Corollary 2.11. Let   be a commutative ring with identity and   a mult iplicative system in  . If   ̅ is an 

ideal of   , then there exists a unique ideal   of   for which  ̅     and     ( )   . 

Corollary 2.12. Let   be a commutative ring with identity and   a prime ideal of  . If   ̅ is an ideal of   , 

then there exists a unique ideal   of   for which  ̅     and   ( )   . 

     Now we prove that localization of mult iplication submodules of an   module at multip licat ive 

systems are also multiplication submodules.    

Proposition 2.13. Let   be an   module and   a mult iplicative system in  . If   is a mult iplication 

submodule of  , then    is a multiplication submodule of   . 

Proof. Let  ̅ be any submodule of   ,  then by Proposition 2.8,  ̅     for the submodule   *  

  
 

 
  ̅+ of  , where     and     ( )   . Since   is a multip licat ion submodule of  , so     

,   - , then by Proposition 2.3, we get ,   -  ,     -, so that      ̅        (   )  
(,   - )  ,   -    ,     -   , ̅   -   and this means that    is a mult iplication submodule 

of   . 

     As a corollary to the above result we prove that localization of submodules of an   module at prime 

ideals are also multiplication submodules.        

Corollary 2.14. Let   be an   module and   a prime ideal o f  . If   is a  multiplication submodule of 

 , then    is a multiplication submodule of   . 

Proof. The result follows directly by taking       in Proposition 2.13. 

     Now we introduce the following definitions. 

Definition 2.15. Let   be an   module. We define   ( )  *      and   ( )   ( )+.  
Definition 2.16. Let   be an   module. We call a submodule   of   an   multip licat ion submodule of 

  if     ,   -  for every     ( ). 
     Now, we prove that locally multiplication submodules are   multiplication.   

Proposition 2.17. Let   be an   module. If   is a submodule of   such that    is a multiplication  

submodule of   , for every prime ideal   of  , then   is an   multiplication submodule of  .  

Proof. Let   be any maximal ideal of  , so it is prime and hence    is a multip lication submodule of   . 

Let     ( ), that means     and   ( )   ( )   , so that     
 .  Then,    is a submodule of    

and as    is a multip licat ion submodule of   , we get       ,     -   and since     
 , so by 

Corollary  2.5, we get (   )        ,     -   ,   -    (,   - ) , so we get     
,   - . Hence,   is an   multiplication submodule of  . 
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     Now we prove that localization of pure ideals of a ring at multiplicative systems are also pure. 

Proposition 2.18. Let   be a commutative ring with identity and   a mult iplicative system in  . If   is a  

pure ideal of  , then    is a pure ideal of   . 

Proof. Let  ̅ be any ideal of   , so by Corollary 2.11, there exists a unique ideal   of   for which  ̅     

and     ( )   . As   is pure we have       , which implies that     ̅        (   )  
(  )           ̅. Hence,     is a pure ideal of   . 

     As a corollary to the above result we prove that localizat ion of pure ideals of a ring at prime ideals are 

also pure. 

Corollary 2.19. Let   be a commutative ring  with identity and   a prime ideal of  . If   is a  pure ideal of 

 , then    is a pure ideal of   . 

Proof. The proof follows directly by putting       in Proposition 2.18. 

Examples 2.20. (1) Consider the ring   . Clearly    *   + is a multip licative system in   . Then, we 

have    
( )  *       + ,    

(*     +)  *     + ,    
(*   +)  *   + and    

(  )    and it is clear 

that      
( )         

(*     +)       
(*   +)       

(  ) , that means      
( )    for  

every ideal   of   . But, if we take the multiplicative system   *   + in   , then we see that for the ideal 

  *   +, we have    
(*   +)  *   + and that      

( )  * +   .  

(2) Consider the ring of integers  . Clearly   * + and   *    + are multip licative systems in  . For  

  * +, suppose that there exists an ideal   of   for which     ( )   , then     ( ), which implies 

that      for some     which is a contradiction, so that * +   ( )    for every  ideal   of  . For 

  *    +,  suppose that there exists an ideal   of   for which     ( )   , then      ( )  or 

    ( ) (or the both). If      ( ), then       for some    , then we get     , which g ives 

    that is a  contradiction and if     ( ), then by using the same technique we get a contradiction. 

Hence *    +   ( )    for every ideal   of  , that means for   * +  and   *    + , we have 

    ( )    for every ideal   of  . 

(3) Consider the ring    . The ideals of     are * +,     *                  +,     *        + , 

    *   + and    . Now we have     
( )  *                  +     ,     

(   )     , 

    
(   )  *   +      and     

(   )   .  Clearly we have 

*                  + *                  +   . Next, let   be any mult iplicative system in    , then  

  *                  +   , on the contrary suppose that   *                  +   , then we 

have one of the following cases: 
( )     , which is a contradiction, since    . 
(  )     , then        which is a contradiction, so that   . 
(   )    , then        which is a contradiction, so that   . 
(  )     , then        which is a contradiction, so that    . 
( )     , then        which is a contradiction, so that    . 
(  )      , then         which is a contradiction, so that     . 
(   )     , then         which is a contradiction, so that     . 
(   )     , then         which is a contradiction, so that     . 

Hence,   *                  +    for every multip licat ive system   in     and this means that if   is 

any mult iplicative system in    , then   *                  + . Next , we have       
( )  

*                  + *                  +   , 

      
(   )  *                  + *                  +   , 

      
(   )  *                  + *                  +    and 

      
(   )  *                  +    . Hence, we have       

( )    for every multiplicative 

system   in     and every ideal   of    . 

     In view of the above examples we introduce the following definition.  

Definition 2.21. Let   be a commutative ring with identity and   an   module. If   is a  multip licat ive 

system in  , then we say   separates   (      ) if     ( )    (resp.     ( )   ) for every ideal   

of   (resp. every submodule   of  ) and we denote the set of all mult iplicative systems in   that separate 

  by    *    is a  multiplicative system separates  +  and the set of all multip licat ive systems in   that 

separate   by    *    is a multiplicative system separates  +. 
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     It is known that if   is a prime ideal of  , then       is a multiplicative system in   so in this case 

we make the following definition. 

Definition 2.22. Let   be a commutative ring with identity and   an   module. If   is a prime ideal of 

 . We say   isolates   (resp.  ) if   ( )    (resp.   ( )   ) for every ideal   of   (resp. every 

submodule   of  ) and we denote the set of all multip licat ive systems in   that isolate   by    *      

is a prime ideal isolates  + and the set of all multiplicative systems in   that isolate   by    *      is 

a prime ideal isolates  +. 
     Note that, in  the last definit ion if   is the prime ideal   of  , that is if    , then we have   ( )  
  ( )     , so the condition   ( )    is trivially satisfied when the ideal   is the prime ideal   

itself. 

     It is known that, if the localizations of two ideals of a ring at a multiplicative system are equal then the 

ideals need not be equal as we see in the following example. 

Example 2.23. Consider the ring    . Take the ideals   *            + and   *     + of    . Now 

let   *       + which is a multip licative system of    . It is easy to check that    {
 

 
 
 

 
 
 

 
}    , but 

clearly    .  

     Now, we prove that if the localizat ions of two ideals of a ring at a  certain  type of multiplicative systems 

are equal (in fact that multiplicative systems which isolate  ), then the ideals are also equal.    

Proposition 2.24. Let   be a commutative ring with identity. Let   and   be two ideals of  . If      and 

     , then    . In particular, if     , then    . 

Proof. Since     , so that   separates  , then     ( )        ( ). As    , let    . Let   

 , then 
 

 
   , then     , for some    . If    , then     ( ), this implies that     ( )   , 

which is a contradiction, so that    . Hence     and as     ( )   , by the same technique we get 

   . Hence,    . For the second part, let    , then 
 

 
     , so that      for some    . If 

   , then     ( ), so that     ( )   , which is a contradiction, so that    . Hence,    . 

Corollary 2.25. Let   be a commutative ring with identity. Let   and   be two ideals of  . If      and 

     , then    . In particular, if     , then    . 

Proof. The proof follows directly by taking       in Proposition 2.24. 

     As in the case of rings we prove the same results of Proposition 2.24 and Coro llary 2.25, fo r the 

modules.    

Proposition 2.26. Let   be an   module. Let   and   be two  submodules of  . If      and      , 
then    . In particular, if     , then    . 

Proof. Since     , so that   separates  , then we have     ( )        ( ) . As    , let   

 . Let    , then 
 

 
   , then     , for some    . If    , then     ( ) , this implies that 

    ( )   , which is a contradiction, so that    . Hence     and as     ( )   , by the same 

technique we get    . Hence,    . For the second part, let    , then 
 

 
     , so that      

for some    . If    , then     ( ), so that     ( )   , which is a contradiction, so that    . 

Hence,    . 

Corollary 2.27. Let   be an   module. Let   and   be two submodules of  . If      and      , 

then    . In particular, if     , then    . 

Proof. The proof follows directly by taking       in Proposition 2.26. 

     Now we prove that, for a ring   and a mult iplicative system   of  , every pure ideal of    is a  

localization of a unique pure ideal of  .               

Proposition 2.28. Let   be a commutative ring with identity and     . If  ̅ is a pure ideal of   , then 

there exists a unique pure ideal   of   such that  ̅    . 

Proof. By Corollary 2.11, there exists a unique ideal   of   such that  ̅     and     ( )   . To show 

  is pure, let   be any ideal of  , then    is an ideal of    and as    is pure we have           , this 

gives (   )  (  )  and since     , so by Proposition 2.24, we get       . Hence,   is a  pure 

ideal of  . 

Corollary 2.29. Let    be a commutative ring with identity and     . If  ̅ is a pure ideal of   , then 

there exists a unique pure ideal   of   such that  ̅    . 

Proof. The proof follows directly by taking       in Proposition 2.28. 
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     Next we prove that, for an   module   and a mult iplicative system   which isolates  , each 

idempotent submodule of    is a localization of a unique idempotent submodule of  .   

Proposition 2.30. Let   be an   module and     . If  ̅ is an idempotent submodule of   , then there 

exists a unique idempotent submodule   of   such that  ̅    . 

Proof. By Corollary 2.8, there exists a unique submodule   of   such that  ̅     and     ( )   . To 

show   is idempotent. By using Proposition 2.3, we have [  ̅   -  ,     -  ,   - . As  ̅  is  

idempotent, we have     ̅  , ̅   - ̅  ,   -    (,   - ) , then as     , by Proposition 

2.27, we get   ,   - . Hence,   is an idempotent submodule of  . 

Corollary 2.31. Let   be an   module and     . If  ̅ is an idempotent submodule of   , then there 

exists a unique idempotent submodule   of   such that  ̅    . 

Proof. The proof follows directly by taking       in Proposition 2.30. 

     Now we prove that, for an   module   and a multiplicative system   in   that isolates  , every pure 

submodule of    is a localization of a unique pure submodule of  .     

Proposition 2.32. Let   be an   module and     . If  ̅ is a pure submodule of   , then there exists a 

unique pure submodule   of   such that  ̅    . 
Proof. By Corollary 2.8, there exists a unique submodule   of   such that  ̅     and     ( )   . To 

show   is pure. If   is any ideal of  , then    is an ideal of    and as    is pure we get             , 

this implies that (  )  (    ) . Since     , by Proposition 2.26, we get        . Hence   

is a pure submodule of  . 

Corollary 2.33. Let   be an   module and     . If  ̅ is a pure submodule of   , then there exists a 

unique pure submodule   of   such that  ̅    .  

Proof. The proof follows directly by taking       in Proposition 2.32. 

Proposition 2.34. Let   be an   module and     . If    ( )   , then    (  )   .  

Proof. Let 
 

 
    (  ), where        . Then, 

 

 
     and by [5, Coro llary 2.9], we have 

 

 
   

(  ) , this gives (  )   , and by Proposition 2.26, we get     , so that      ( )   , that is 

   , which gives 
 

 
  . Hence,    (  )   . 

Corollary 2.35. Let   be an   module and     . If    ( )   , then    (  )   . 

Proof. By taking       in Proposition 2.34, the proof follows directly. 

Proposition 2.36. Let   be an   module and     . If     (  )   , then    ( )   . 

Proof. As    , let    . Let      ( ), then     , this gives (  )    and by [5, Corollary 2.9], 

we have 
 

 
   (  ) , so that  

 

 
    . Hence 

 

 
    (  )   , so that 

 

 
  . As     ( )   , we  

get    , so that    ( )   .    

Corollary 2.37. Let   be an   module and     . If     (  )   , then    ( )   . 

Proof. By taking       in Proposition 2.36, the proof follows directly.      
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