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Abstract

In this paper, we consider a certain type of complex pentadiagonal matrices. Then we
show that the permanents of this matrix generate Padovan numbers. Finally, we give a
Maple procedure in order to verify our result.
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. Introduction

The famous integer sequences (e.g., Fibonacci, Lucas, Padovan) provide invaluable
opportunities for exploration, and contribute handsomely to the beauty of mathematics,
especially number theory [1, 2]. Among these sequences, Padovan numbers have
achieved a kind of celebrity status. The Padovan sequence {P (n)} is defined by the
recurrence relation, forn > 2

Pn)=P(n—-2) + P(n—3)

with P (0) = P (1) = P(2) = 1[3]. The number P (n) is called n*! Padovan
number. The Padovan numbers are

1,1,1,2,2,3,4,5,7,9,12,16, 21, 28,37, 49, ...

forn = 0,1, 2, ... This sequence is named as A000931 in [4].
The permanent of a n X n matrixA = (a;;) is defined by
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Per(A) = ) ﬁaioﬁ)

o€S, i=1

where the summation extends over all permutations o of the symmetric group S,.
Thepermanent of a matrix is analogous to the determinant, where all of the signs used in
theLaplace expansion of minors are positive.

Permanents have many applications in physics, chemistry, graph theory, electrical
engineering, and so on [5, 6, 7, 8, 9]. One of the most important applications of
permanents is the relationship between some special types of matrices and the well-
known number sequences. There are many papers in relation to that applications. [10, 11,
12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] are some of them.

In this paper, we consider a certain type of complex pentadiagonal matrices. Then we
show that the permanents of this matrix generate Padovan numbers. Finally, we give a
Maple procedure in order to verify our result.

Main Results

Let A =[a;]be an m X n real matrix with row vectors a,a,,..,ap,. We say A

iscontractible on column(resp. row) k if column (resp. row) kcontains exactly twonon-
zero entries. Suppose A is contractibleon column k with a;, # 0 # aj, and i # j. Then

the (m — 1) X (n — 1)matrix Aj;; obtained fromA by replacing row i with
a0y + aj; and deleting row j and column k is called the contraction of A on column k
relative to rows i and j. If A is contractible on row ay; # 0 # ay; and i # j, then the

. T . ; ;
matrix A; = [Afj] s called the contraction of A on row k relative to columns i and j.

We say that A can be contracted to a matrix B if either B = A or there exist matrices
Ag,Aq,..., A (t = 1)suchthat A, = A, A, = B,and A, is a contraction of A,_; for
r = 1,...,t[6].

Brualdi and Gibson [6] proved the following result about the permanent of a matrix.

Lemma 1 LetA be a nonnegative integral matrix of order n forn > 1 and let B be a
contraction of A. Then

perA = perB. (1)
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Let H, = h;; be ann X n pentadiagonal matrix as the following

A=|: 0 =~ -~ ~ - 0 : (2)

nxn

where i = v—1. If n = 5, then we obtain the permanent of Hs by using
Laplace
expansion as the following

PerH; =Per| 0 —-i O i -1

5%5
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O i -1 0 i -1 0 O

—i 0 i -1 —i 0 i -1
= Per + (—1)Per

0O -1 O i 0O —-i 0 i

O 0 —-i O 0O 0 —-i O

/i -1 0\ (O i —1w (—1 0 O
=(—iPer| —i O i |+Per|—-i O i |—Per| —i 0 i
I L VI B R

0 i -1 0 i -1 0 i
= Per( ) - Per( ) + (—i)Per( ) + Per(
—-i 0 —-i 0 —i 0 —-i 0

=1-0+1+41=3=P(5).

[—

By the contraction method introduced by Brualdi in [6], we now present the
following theorem that gives the relationship between the permanent of the pentadiagonal
matrix H,, and the Padovan number P (n).

Theorem 2 Let H, be the n X n pentadiagonal matrix given by (2). Then the permanent
of the matrix is equal to the n'™™ Padovan number P (n).

Proof.Let HX be the k'™ contraction of H,,1 < k < n — 2. Since the definition of the
matrix H,; thematrix H,can be contracted on column 1 so that
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Furthermore, the matrix H,> can be contracted on column 1 and
P(3) =P@) = 2,P(5 = 3sothat

(n-2)x(n-2)
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/2 3i _2 0 see cee O \

—-i 0 i -1 0
0 —-i 0 i
H; = 0 0
|
o —i 0 j
\0 - 0 =i 90 )(n_g)x(n—B)
(p(4) iP5) -P® 0 " 0 \
_j 0 i -1 0
0 i 0 :
= 0 0
1 -1
o —-i 0

(n—3)x(n-3)

Continuing this process, we have
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(P(k +1) iP(k+2) -Pk) 0 - = 0 \
—i 0 i -1 0
0 —i 0 i
HK = 0 0
1 -1
o -1 0 i

(n-K)x(n—k)
for3 < k < n — 4. Hence,
P(n—2) iP(n—2) —P(m-23)
Hi% = i 0 i
0 —i 0 3x3
which, by contraction of H2~3 on column 1, gives

P(n—1) iP(n)
(7
—i 0 2X2

By applying equation (1), we obtain perH, = HI}2
desired
2.1. Maple Procedure

—i?P (n) = P (n) which is

The following Maple procedure calculates the permanent of the pentadiagonal matrix H,,
given by (2).

restart:

with(LinearAlgebra):
permanent:=proc(n)
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local 1,j,r,f,H;

f.=(i,j)->piecewise(i=1 and j=1,1,j-i=-1,-1,j-i=1,1,j-i=2,-1,0);
H:=Matrix(n,n,f):

for r from 0 to n-2 do

print(r,H):

for j from 2 to n-r do
H[1,j]:=H[2,1]*H[1,j]+H[1,1]*H[2,]:

od:
H:=DeleteRow(DeleteColumn(Matrix(n-r,n-r,H),1),2):
od:

print(r,eval(H)):

end proc:with(LinearAlgebra):

permanent(n);
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