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Abstract

In this paper, deal we with the problem of optimizing the ratio of two quadratic
functions subject to a set linear constraints with the additional restriction that the
optimal solution should also translation quadratic fractional programming problem
(QFPP) to linear fractional programming problem (LFPP) by using pseudoaffinity
after solving by modified simplex method. And consequently a convergent
algorithm has been developed in the following discussion. Numerical examples

have been provided to support the theory, by using Matlab 2016.

Keywords: Translation QFPP, by Pseudoaffinity to LFPP, Modified Simplex
Method.

1.1 Introduction

The quadratic fractional programming problems (QFPP) are the topic of great
importance in nonlinear programming. They are useful in many fields such as
production planning, financial and corporative planning, health care and hospital
planning. In various applications of nonlinear programming, one often encounters
the problem in which the ratio of given two functions is to be maximized or
minimized. Several methods to solve such problems are proposed in (1962)
Charnes and Cooper ([6], [13]), Linear fraction problems (i.e. ratio of objectives

that have numerator and denominator) have attracted considerable research and
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interest, their method depends on transforming this LFPP to an equivalent linear
program, showed that by a simple transformation the original LFPP can be reduced
to an LPP that can therefore be solved using a regular simplex method for LP. It
was found that this approach is very useful for mathematicians because most
theoretical results developed in LP could be relatively easily expanded to include
LFPP [4]. Sing (1981) [11] did a useful study about the optimality condition in FP.
In (2007) Tantawy studied a feasible direction method to solve LFPP [17]. Also in
(2010) Salih studied and developed a feasible direction method to solve LFPP
which is defined by Tantawy and we have suggested an approach to solve the same
problem by using the modified simplex method [14]. Khurana and Arora (2011)
studied an algorithm for solving a QFP when some of its constraints are
homogeneous ([9], [10]). Moreover, in (2008) Fukushima and Hayashi have been
addressed QFPP with quadratic constraints [8]. Abdulrahim, (2011) studies on
solving QPP with extreme points [2]. In (2013) Abdulrahim, solving QFPP via
feasible direction development and modified simplex method [3]. In (2013)
Sulaiman and Nawkhass they have study a new modified simplex method to solve
QFPP and compared it to a traditional simplex method by using pseudoaffinity of
quadratic fractional functions [13]. Also in (2005) Biggs worked on Nonlinear
Optimization with Financial Applications [5]. In (2013) Sulaiman and Nawkhass
they have study a solving QFPP by using the Wolfe’s method and a modified
simplex approach [12]. To extend this work, we have been defined QFPP and
investigated new technique to convert the quadratic fractional objective function to
linear fractional objective function by using pseudoaffinity to generate the best
compromising optimal solution. In addition, the special cases of the problem will
be solved by Modified Simplex Method after convert the objective function to the

pseudoaffinity function.
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1.2 Definitions and Theorems

Definition 2.1: Linear Fractional Programming Problem

The mathematical programming problem for LFPP can be formulated as follows:

Maximize (Minimize) Z = i‘—:;
Subject to:

AX =<b
xEX = jx; AX = b}

AX =b

Where x € R™, 4 is an m X n matrix; ¢ and 4 are n—vectors; b € R™ and y, S are
scalar constants. Moreover d"x+ 8 = 0 everywhere in x [17].

Definition 2.2: Quadratic Programming Problem

If the optimization problem is of the form

Maximize (Minimize) Z = a + C7x +%xrﬁx

Subjectto :
=
z] b

x=0

Ax

Where

A= [ai}-) e’ matrix of cofficients, ¥i = 1,2,...,m, and j =1,2,..,n, b= [bl,bz,...,bmjr,
x = (x, %5, 0, %, )7, CT = (€y 65,0, 6,07
, and G = (g.;).... 1S a positive definite or positive semi-definite symmetric square

matrix, and T is transposed then the constraints are linear and the objective function
IS quadratic. Such an optimization problem is said to be a QPP [1].

Definition 2.3: Quadratic Fractional Programming Problem

The mathematical programming problem for QFPP can be formulated as follows

fx._+|‘_'._Tx+‘§xTG._x

T

Maximize (Minimize) Z =
P

=
K

x+‘§:rTGn:r
Subjectto :

Ax

x=0
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Where G,, G, are (n x n) matrix of coefficients with G,,G, are symmetric matrixes.
All vectors are assumed to be column vectors unless transposed(T), where x is an n-
dimensional vector of decision variables, c¢,.c, is the n-dimensional vector of

constants, b is m-dimensional vector of constants, «,,a, are scalars.

In this work the problem that has objective function is tried to be solved has the

following form:

T T [|:'T::+ }'_‘ujeT::+ 6 [|:'T::+ _vj:jeTx+ 3]
. e g xtyie xtE) dlx+ @) _ (Flx+e]
Maximize (Minimize)Z Tt O Tete) Tt )
Subject to:
=
Ax|=| b
x=0

Where x € R®, 4 IS an m xn matrix; c,e.d and f are n —vectors; b € R™ and v, 5.6, ¢
are scalar constants. Moreover fx + =, d"x+ £ = 0 everywhere in =,

Definition 2.4: Pseudoaffinity of Quadratic Fractional Functions

In this section we are going to characterize the pseudoaffinity of quadratic

fractional functions of the following kind:

|:t-_+|.’.'Ix+‘§ *Gyx T T

(' x+yie x+6)
dlx+ @ aix) dlx+ &)
x = - - = = - -
f( j (Flats) (Flats) (flxts) (1)
a;+CIx+‘§xTG-_I |:|:-Tx + ¥l elx+ 8]
. . r . .
— [frx+s) __ gi=) _ |_fi..+£‘_1
Or f(x) (@lx+ B) (@ + B (dTx+ B)

Defined on the set x={x eR":(d"x +f)=0}, or X={x e R™:(fTx + £) = 0}
where G, #0 IS a nxn symmetric matriX, d.f,x,c;e®R" |, f.d=0 , and
ay, 8,58,y €ER . Note that being &, symmetric, it is 6, =0 if and only
ifv,(G) =n—1[7].

Corollary 2.1: Consider function f(x) defined in (1) and suppose that there

exist ag. by py € R, a; # 0, such that f(x) can be written in the following form:
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apd! bt —iil

— dlx+ )
f(.’l’] - I:fT:r +z])
T GpFo
g f I+bn+m
or f(xj = |"|-:._'TI +|E:' :

) If p, < 0then g(x) is pseudoaffine on x.
i) If py = 0then g(x) is pseudoaffine on
X, ={xe®": (drx + )= Mf"p_u} and X,={xeR%:0< (drx + 5) < wf"p_ﬂ}[7].

In our studies we take special cases where p,=0 , then the

apd! x+b,
(fo +5)

function g(x) = a,d”x + b, is pseudoaffine on x, f(x) = but where p, =0,

then the  function g(x]=aﬂdrx+bﬁ+l,d:;p_:m is not pseudoaffine

G x+byt—gotl

on X, f(x) = __"@x+5 and linear fractional functions by adding constraints
le;r +&)

respectively then it can solve it by Modified Simplex Method, which is shown in

numerical examples and result section 1.5.

1.3 Modified Simplex Method Development
Simplex method is developed by Dantzig in (1947). The Simplex method provides
a systematic algorithm which consists of moving from one basic feasible solution
(one vertex) to another in prescribed manner such that the value of the objective
function is improved. This procedure of jumping from vertex to vertex is repeated.
If the objective function is improved at each jump, then no basis can ever be
repeated and there is no need to go to back to vertex already covered. Since the
number of vertices is finite, the process must lead to the optimal vertex in a finite
number of steps. The Simplex algorithm is an iterative (step by step) procedure for
solving linear programming problems. It consists of:

I.  Having a trail basic feasible solution to constraint equations.

Il.  Testing whether is an optimal solution.
I11.  Improving the first trial solution by a set of rules, and repeating the process

till an optimal solution is obtained. For more details [15].
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Modified Simplex method to solve linear fractional programming problem and to
solve quadratic objective function can be written as the produced two linear
functions (QPP) [16]. Using modified Simplex method to solve the numerical
example to apply simplex process [16]. First we find 4, and 4, from the
coefficient of numerator and denominator of objective function respectively, by
using the following formula:

A =Cy—Coxpi=12j=12,..,m+n,

Zy=CgVg +v, Z, =CgVz +F ,v,B are constants,Z = _

In this approach we define the formula to find a; from z,,z,.4,; and 4, as
follows: A, = Z,A,, — Z,A;,. Here C;; are the coefficients of the basic and non-basic
variables in the objective function and , C5; are the coefficients of the basic variables
in the objective function, j =1,2,..,m+n, i = 1,2. For testing optimality solution
must be all 4; = 0 but here all 4; not lesser than zero, and then the solution is not

optimal. Repeat the same approach to find next feasible solution.

1.4 Algorithm For Modified Simplex Method Of QFPP

An algorithm for solving QFPP by modified simplex method can be summarized as
follows ([14], [16]):

Stepl: Write the standard from of the problem, by introducing slack, Surplus and
artificial variables to constraints, and write starting simplex table, after
convert the quadratic fractional objective function to linear fractional
objective function by using pseudoaffinity.

Step2: Write the 4; row in the starting simplex table as: A,=Z,4;, —Z,4;,

Step3: Use simplex process to find the solution.

Step4: Check the feasibility of the solution in step3, if is feasible then go to step5,
otherwise use dual simplex method to remove infeasibility.

Step5: Check the solution for optimality if all ;= 0, then the solution is optimal,

otherwise go to step3.
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1.5 Numerical Example and Results
Example 1: We consider the following QFPP as

Sal +24x,x,+ 1625 Hox, +Ex, +1
Jxs +Tx,aq Haxa+ T, +9x, 12

Max.Z =

Subject to:
X tx, =6
8xy +4x, = 32
=3
X, =5
x,%, =0

Solution 1: Solving the example 1 by Modified Simplex Method, after convert the

objective function to pseudoaffinity function as follows:

9:?‘+z4x-_xz+'_sx§+ax-_+sxz +1

— (52 +axg+1) _ 18 24] T _ [6] T _ [3] _ _
Max.Z (,+ 2,4 2) Where ¢, = [24 32 6= 8 4= ik LE=1

Then we get g(x) = 3x, +4x, + 1 is pseudoaffinity function by corollary part (i)
where p, =0

And we get Max.z = Z:2222 After finding the values of the objective function by

x,tx,+2

Modified Simplex Method with used the same constraints, After 2 steps we
obtained the initial table as follows in table 1. After three iterations, we obtained

the result in the following table 2:

Table 1: Initial table for example 1 by Modified Simplex Method

T3 4 0 0 00
c,[1 1 0 0 00
BV [Cs Cop| Ve | %2 % 23 x, xz x| Minratio
X3 0 0 6 1 1 1 0o 0 0 6/1=6
X4 0 0 |32 | 8 4 0 1 o0 0 32/4=28
Xg 0 0 3 1 0 0 0 1 0 -
e 0 0 5 0 1 o 0 0 1 5/1=5
Z;=1 ﬁ}i 3 4 o o0 0o o0
Z,=2 A,|1 1 0 0 0 0
z, A |5 7 0 0 0 0
=—=== j
Z, 2
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Table 2: Final table for example 1 by Modified Simplex Method

Ci]3 4 0 0 0 0
c,|1 1 0 0 00
BV |Ca Cg| Vg Xy X3 X3 Xy Xg Xg Min ratio
Xg 0 0 2 0 0 -1 0 1 1
% |4 1 (s |0 1 0 0 0 1
x3 |3 1|1 |1 0 1 0 0 -1
X, |0 0|4 |0 0 -8 1 0 4
£, =24 ﬁjl 0 0 —3 0 0o —1
Z,=8 A, [0 0 -1 0 0 0O
Zy 24 3 A. 0 0 0 0 0 —8
= —— = — = _;l
Z, 8

After solving it by Modified Simplex Method, we get Max.Z =3 and x, =1, x, =

Example 2: We consider the following QFPP as

—Bax} +24x +32x] +16x, gy FEdu, xgH16w, 16k, +2
16x ) +16xs +32x5 +32x, Xy +480g xo+ 482,20, + 242, + 242, + 402, +8
Subject to:
% +3x,+2x; =9
3x; +2x, +x3 =8
2xy+x, +3x; =7
Xy, X, %5 =0

Max.Z2 =

Solution 2: Solving the example (2) by Modified Simplex Method, after convert

the objective function to pseudoaffinity function as follows:

—sx§+z4x§+szx§+:ax;x5+54x5x5+:axz+:ax5+z

(exs +8Xq+16xg+4a)

Max.Z = -
(2x, +2x, +2x,+2)
—16 16 0 0 o
Where G, =| 16 48 64|,Cc{ =|16|.d"=|8 |, a;=2F=4
0 64 64 16 16

Then we get g(x) = —x; + 3x, + 2x, +§ is pseudoaffinity function by corollary part

2, After finding the values of the

x, Tqx,tix+2

—x, +3x,+2x+

(i) where », = 0. And we get Max.Z =

objective function by Modified Simplex Method with used the same constraints,
After 2 steps we obtained the initial table as follows in table 1. After two iterations,

we obtained the result in the following table 2:
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Table 1: Initial table for example 2 by Modified Simplex Method

Ci]-1 3 2 0 00
C,| 2 2 2 0 00
BV |Cs Co| Ve | x1 x; x3 x4 x5 xg | Minratio
X, |0 0 ]9 |1 3 2 1 0 @ |9/3=3
X5 0 0 |8 3 2 1 0 1 0 |g/2=4
g 0 0 |7 2 1 3 0 0 1 |7/1=7
1 A,[-1 3 2 0 0 0
Z=3 p,| 2 2 2 0 0 0
Z,=2 A |-3 5 3 0 0 o0
- g
Z 1
g=1_C
Z, 4

Table 2: Final table for example 2 by Modified Simplex Method

Cp | -1 3 2 0 0 0
Cp | 2 2 2 0 0 O
BV |Cs Cp|Vp | %1 % X3 xy x5 xg | Minratio
X 3 2 |3 | 1/3 1 2/3 1/3 0 0
xs |0 0 |2 | 7/3 0 -1/3 -2/3 1 0
*e 0 0 |4 5/3 0 7/3  -1/3 0 1
19 A, | 2 0 0 —1 0 0
Z1== A 4/3 0 2/3 —2/3 0 0
Z,=8 A, | —86/3 0 -19/3 -5/3 0 0
_4_1°
Z, 16

After sblving it by Modified Simplex Method, we get Max.z = E and x, =0,

X, =3,x;=0

Example 3: We consider the following QFPP as

2x] +4xi+Bx,x, + 9x, + Gxy +3
2xT+ 2xd +4x, %, + 5x, + Gxg + 2
Subject to:

dxy, —2x, =20

3x; + 5x, = 25

X%, =0

Max. 2 =

Solution 3: Solving the example 3 by Modified Simplex Method, after convert the
objective function to pseudoaffinity function as follows:
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4::% +4::§+sxa_x5+9xa_+ 5Xg + B
_ (Xa+ Xa+2) _ B B T _ T 1 _ _
Max.Z = —— (2l Wherec;l_[B B],cl —[g],d —[1],r:x1—3,,@—2
Then we get g(x) =(4x, + 4x, + 1)+ ﬁ IS pseudoaffinity function by
._x._ .'-t’z s

corollary part (ii) where p, = 0. And we get

|:4x._ + 4, +1}+m (4x, + s, +1) m
Max.Z = (Zx, +2x, +1) - (2x, +2x,+1) (2%, +2x, +1)

Here we have the remainder second part c = (0,0)d= (11), a= 1,6= 2
o @ 1 Xy 1, 1 _ 1 1
(c-%d)x+2=[0O-G@D)] ()+6 =-im—ixm+]

- 1 i i 7T 7 B
(42, +4x, +1) | (—Zxa—gwatl)  cwgtowgds

Max.Z = + =
(2x, +2x, +1) (2x, +2x,+1) (2x, +2x,+1)

After finding the values of the objective function by Modified Simplex Method
with used the same constraints After 2 steps we obtained the initial table as follows

in table 1. After two iterations, we obtained the result in the following table 2:

Table 1: Initial table for example 3 by Modified Simplex Method

Ch|7/2 7/2 0 0
C;, 2 2 0 0
BV |Cg Cg| Vg | x4 Xy X3 Xy Min ratio
X3 0 0 |20 | 4 —2 1 0 20/4=5
X4 0 0 |25 | 3 5 0 1 25/3 =8.33
3 Ay [7/2 772 0 0
Z,= 2 A | 2 2 0 0
'y
Z,=1 A 1/2  1/2 0 0
Z
g=21_Z
Z,
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Table 2: Final table for example 3 by Modified Simplex Method

Ci1 7/2  7/2 0 0
C;, 2 2 0 0
BV | Cs Cs | Vg X4 X Xy Xy Min ratio
X [7/2 2 |75/13 |1 0 5/26 1/13
X2 | 7/2 2 |20/13 |0 1 —3/26 2/13
_ 352 A, 0 0 -7/26 —21/26
13 A 0 0 -2/13 —6/13
_ 203 A, 0 0 -1/26 —3/26
? 13
Z, 352
-7 =55
After solving it by Modified Simplex Method, we get Max.z = 323 and x, = E

20
Xy — —
= 13

1.6 Comparison of the Numerical Results

Now, we are going to comparison the numerical results which are obtained of the

examples as below in table 3:

Table 3: Comparison between results of the Objective Functions

Examples | Before Correct The Objective After Correct The Objective
Function (QFPP) Function (LFPP)
Examplel | mMax.Z = 3andx, = 1,x, =5 Max.Z =3andx, = 1,x, =5
Example2 | Max.Z = Eandxl =0,x,=3,x3=0 |Max.Z= E andx; = 0,x, = 3,x3=0
Example3 | Max.Z = = andx; ==, x, == Max.Z =20 andv; =2, =1

In the above table 3, we compare the result. It is notice that value of objective

function in example 1, example 2, and example 3 they have same results when it
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solved by Modified Simplex Method after convert the objective function by

Pseudoaffinity function.

1.7 Discussion

In this paper solved QFPP by the Modified Simplex Method after convert objective
function by Pseudoaffinity function to found the maximum value of QFPP. The
optimal solution must be at one of the points of the polygon of the feasible,
sometimes it may be need to use corollary 2.2 part (ii) for finding best optimal
solution for the problem. The comparison of this method is based on the value of
the objective function, the study found that Max.Z resulted of that method are same,
therefore we can solve of QFPP by this method under our method and algorithm.
Consequently reliable results have been found.
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