Trigonometric B-Spline Interpolation

Najim Abdullah Ismaeel

University of Garmian -College of Education - Math. Department

Abstract:
In present paper
the objective of the choice for studding trigonometric B-spline is made to show it is gives better approximate result or not of the boundary value problems in ordinary differential equations. By applying B-spline procedures to obtain approximate solution of the boundary value problems of ordinary differential equations with trigonometric B-spline, cubic trigonometric B-spline have motivated the solve of boundary value problems with numerical procedures.

Keywords:

Trigonometric B-spline, singular perturbed, second order boundary value problem.

2.Trigonometric B-Splines: [3]

Let $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ be a non-decreasing sequence of real numbers such that $\mathrm{x}_{\mathrm{i}+\mathrm{k}}-\mathrm{x}_{\mathrm{i}}<2 \pi$ for all i , where $\mathrm{k} \geq 1$ is a given integer. The real-valued functions $\mathrm{T}_{\mathrm{i}, \mathrm{k}}$ on R defined by $\mathrm{T}_{\mathrm{i}, \mathrm{k}}(\mathrm{x})=0$ if $\mathrm{x}_{\mathrm{i}+\mathrm{k}}=\mathrm{x}_{\mathrm{i}}$ and $\mathrm{T}_{\mathrm{i}, \mathrm{k}}(\mathrm{x})=\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{X}_{\mathrm{i}+\mathrm{k}}\right]_{\mathrm{t}}\left(\sin \frac{\gamma-\alpha}{2}\right)^{k-1}$ if $\mathrm{x}_{\mathrm{i}+\mathrm{k}}>\mathrm{x}_{\mathrm{i}}$. .

Definition 2.1 [28]:

The normalized trigonometric B -splines $\mathrm{T}_{\mathrm{i}, \mathrm{k}}$ associated with the knot sequence $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ which gives higher degree trigonometric B-splines, gives by the following iterative formula

$$
\begin{equation*}
\mathrm{T}_{\mathrm{i}, \mathrm{k}}(\mathrm{x})=\frac{\sin \left(\frac{x-x_{i}}{2}\right)}{\sin \left(\frac{x_{i+k}-1-x_{i}}{2}\right)} T_{i, k-1}(x)+\frac{\sin \left(\frac{x_{i+k}-x}{z}\right.}{\sin \left(\frac{i_{1+k}-x_{i+1}}{x}\right)} T_{i+1, k-1}(\mathrm{x}), \mathrm{k}=2,3,4, \tag{1}
\end{equation*}
$$

starting with uniform normalized trigonometric B-spline

$$
T_{i, 1}(\mathrm{x})=\left\{\begin{array}{lc}
1 & \text { for } \\
x_{i} \leq x<x_{i+1} \\
0 & \text { otherwise }
\end{array}\right.
$$

the $T_{i, k}$ functions as defined in (1) has the following properties :
i. Support $\left(\mathrm{T}_{\mathrm{i}, \mathrm{k}}\right)=\left[\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)$
ii. $\mathrm{T}_{\mathrm{i}, \mathrm{k}} \geq 0$ for all x and all i ,(is positive in the interior of its support and zero otherwise).
iii. $\sum_{i=-\infty}^{\infty} T_{i, k}(\mathrm{x})=1$ for all $\mathrm{x} \in \mathrm{R}$.

Trigonometric B-splines $T_{i, k}$ obtained by applying a linear factor to $T_{i, k-1}$ and $\mathrm{T}_{\mathrm{i}+1, \mathrm{k}-1}$, we see that degree actually increased by 1 at each step .

The spline function $\mathrm{S}(\mathrm{x})$ with respect to the given trigonometric
B-spline defined by $S(x)=\sum_{i=1}^{n} c_{i} T_{i}^{m}(x), c_{i} \in \mathbb{R}, i=1,2, \ldots, n$.

2.1 Cubic Trigonometric B-spline: [4, 5]:

Let π be a uniform partition of the problem domain [a,b] such that $\pi=\left\{\mathrm{a}=\mathrm{x}_{0}<\right.$ $\left.\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots<\mathrm{x}_{\mathrm{n}-1}<\mathrm{x}_{\mathrm{n}}=\mathrm{b}\right\}$, at the knot points $\mathrm{x}_{\mathrm{i}}, \mathrm{i}=0, \ldots, \mathrm{n}-1, \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{0}+\mathrm{ih}$ and mesh distance $\mathrm{h}=(\mathrm{b}-\mathrm{a}) / \mathrm{n}$, on this partition. The Cubic Trigonometric B -spline defined upon the set of $n+1$ knot points of the problem domain $[a, b]$ as:

$$
\mathrm{TB}_{\mathrm{j}, 3}(x)=\frac{1}{6}\left\{\begin{array}{lr}
\sin ^{3}\left(\frac{x-x_{i-2}}{2}\right), & {\left[x_{i-2}, x_{i-1}\right]} \\
\sin ^{2}\left(\frac{x-x_{i-2}}{2}\right) \sin \left(\frac{x_{i}-x}{2}\right)+ & \\
\sin \left(\frac{x-x_{i-2}}{2}\right) \sin \left(\frac{x_{i+1}-x}{2}\right) \sin \left(\frac{x-x_{i-1}}{2}\right) & \\
+\sin ^{2}\left(\frac{x-x_{i-1}}{2}\right) \sin \left(\frac{\left(x_{i+2}-x\right.}{2}\right), & {\left[x_{i-1}, x_{i}\right]} \\
\sin \left(\frac{x-x_{i-2}}{2}\right) \sin ^{2}\left(\frac{x_{i+1}-x}{2}\right)+ & \\
\left.\sin \left(\frac{x-x_{i-1}}{2}\right) \sin ^{\left(\frac{x_{i+1}-x}{2}\right.}\right) \sin \left(\frac{x_{i+2}-x}{2}\right) & \\
+\sin \left(\frac{x-x_{i}}{2}\right) \sin ^{2}\left(\frac{x_{i+2}-x}{2}\right), & {\left[x_{i}, x_{i+1}\right]} \\
\sin ^{3}\left(\frac{\left(\frac{x_{i+2}-x}{2}\right)}{}\right) & {\left[x_{i+1}, x_{i+2}\right]} \\
0, & \text { otherwise }
\end{array}\right.
$$

where $\emptyset=\sin (h) \sin \left(\frac{h}{2}\right) \sin \left(\frac{3 h}{2}\right)$

It is worth mentioning that $\operatorname{CTB}_{j}(x)$ are twice continuously differentiable piecewise on the problem domain [a, b]. Now let $S(x)$ be the spline interpolating function at the nodal points, then $\mathrm{S}(\mathrm{x})$ can be written as $\mathrm{S}(\mathrm{x})=\sum_{j=-1}^{n+1} c_{j} T B_{j, 3}$.
$S(x)$ is approximate solution of differential equation where C_{j}^{\prime} s are unknown coefficients, and $T B_{j, 3}(x)$ are cubic trigonometric B -spline functions. To solve boundary value problem of second order with using cubic trigonometric B-spline functions $C T B_{j}$. It required $C T B_{j}, C T B_{j}^{\prime}$, and $C T B_{j}^{\prime \prime}$ been evaluated at the nodal points, that are summarized in the following table 1.

Table 1. The values $\mathrm{B}_{\mathrm{i}, 3}, \mathrm{~B}_{\mathrm{i}, 3}^{\prime}$ and $\mathrm{B}_{\mathrm{i}, 3}$

X	x_{i-}	$\mathrm{X}_{\mathrm{i}-1}$	$\mathrm{X}_{\mathrm{i}} \quad \mathrm{X}_{\mathrm{i}+1}$	$\mathrm{X}_{\mathrm{i}+2}$
CTB	0	$\frac{1}{2} \tan \left(\frac{k}{2}\right) \csc \left(\frac{3 h}{2}\right)$	$2 \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)$	$\frac{1}{2} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)$
СТВ	0	$\frac{3}{4} \csc \left(\frac{3 h}{2}\right)$	0	$-\frac{3}{4} \csc \left(\frac{3 h}{2}\right)$
$\begin{array}{\|l\|} \hline \text { CTB } \\ \hline \end{array}$	0 0	$\frac{3}{4} \csc \left(\frac{3 h}{2}\right)\left[\cot \left(\frac{h}{2}\right)\right.$ $+\cot (\mathrm{h})]$	$\begin{aligned} & -\frac{3}{2} \csc \left(\frac{3 h}{2}\right)\left[\sin \left(\frac{h}{2}\right)\right. \\ & \left.+\cos (\mathrm{h}) \csc \left(\frac{h}{2}\right)\right] \end{aligned}$	$\frac{3}{4} \csc \left(\frac{3 h}{2}\right)\left[\cot \left(\frac{h}{2}\right)\right.$ $+\cot (\mathrm{h})]$

2.2 Description of the Method:

Consider the self-adjoint second order singularly perturbed boundary value problem of the form

$$
\begin{equation*}
l u(x)=-€ u^{\prime \prime}(x)+a(x) u(x)=f(x) \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& u(0)=\alpha \\
& u(1)=\beta \tag{4}
\end{align*}
$$

where α and β are constants and \in is a small positive parameter $(0<E \leq 1), \mathrm{a}(\mathrm{x})$ and $f(x)$ are sufficiently smooth functions. Let $a(x)=a=$ constant and let $u(x)=S(x)=\sum_{j=-1}^{n+1} c_{j} T B_{j, 3}$ is approximate solution of (3). Then let $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ be $n+1$ grid points in the interval $[0,1]$. So we have $x_{1}=x_{0}+i h$ where $h=x_{i+1}-x_{i}=\frac{1}{n}$ at the knot points, and $x_{0}=0, x_{n}=1, i=1,2, \ldots, n$, we get:
$S\left(x_{i}\right)=\sum_{j=-1}^{n+1} c_{j} T B_{j, 3}\left(x_{i}\right)$
$S^{\prime}\left(x_{i}\right)=\sum_{j=-1}^{n+1} c_{j} T B_{j, 3}^{\prime}\left(x_{i}\right)$
$S^{\prime \prime}\left(x_{i}\right)=\sum_{j=-1}^{n+1} c_{j} T B_{j, 3}^{\prime \prime}\left(x_{i}\right)$
substituting the value of equations (5) and (7) in equation (3) we get:
$-\in \sum_{j=-1}^{n+1} c_{j} T B_{j, 3}^{n \prime}\left(x_{i}\right)+a\left(x_{i}\right) \sum_{j=-1}^{n+1} c_{j} T B_{j, 3}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1,2, \ldots, n$
and the boundary condition becomes,
$\sum_{j=-1}^{n+1} c_{j} T B_{j, 3}\left(x_{0}\right)=\alpha$
(9)
$\sum_{j=-1}^{n+1} c_{j} T B_{j, 3}\left(x_{n}\right)=\beta$
the values of the spline function at the knot points are determined by using table (1), and substituting in (8)-(10), we get a system of $(n+3) \times(n+3)$ equations with $(n+3)$ unknown. Now we write the above system of equations in the following form
$\mathrm{SX}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}}$,
where $X_{n}=\left(c_{-1}, c_{0}, \ldots, c_{n+1}\right)^{T}$ are unknowns
$\mathrm{I}_{\mathrm{n}}=\left(\alpha, \gamma, f\left(x_{0}\right), \ldots, f\left(x_{n}\right), \beta\right)^{T}$

Since $\quad \mathrm{TB}_{\mathrm{j}, 3}(\mathrm{x})=\frac{1}{\square}\left\{\begin{array}{lr}+\sin ^{2}\left(\frac{x}{2}\right) \sin \left(\frac{x_{i+2}}{2}\right), & {\left[x_{i-1}, x_{i}\right]} \\ \sin \left(\frac{x-x_{i-2}}{2}\right) \sin ^{2}\left(\frac{x_{i+1}-x}{2}\right)+ & \\ \sin \left(\frac{x-x_{i-1}}{2}\right) \sin \left(\frac{x_{i+1}-x}{2}\right) \sin \left(\frac{x_{i+2}-x}{2}\right) & \\ +\sin \left(\frac{x-x_{i}}{2}\right) \sin ^{2}\left(\frac{x_{i+2}-x}{2}\right), & {\left[x_{i}, x_{i+1}\right]} \\ \sin ^{3}\left(\frac{x_{i+2}-x}{2}\right) & {\left[x_{i+1}, x_{i+2}\right]} \\ 0, & \text { otherwise }\end{array}\right.$
$\mathrm{TB}_{-1,3}(\mathrm{X})=\frac{1}{\varnothing}\left\{\begin{array}{l}\sin ^{3}\left(\frac{x_{1}-x}{2}\right), \\ 0,\end{array}\right.$

$$
\left[x_{0}, x_{1}\right]
$$

otherwise
$\mathrm{TB}_{0,3}(\mathrm{X})=\frac{1}{\varnothing}\left\{\begin{array}{lr}\sin \left(\frac{x-x_{0}+2 h}{2}\right) \sin ^{2}\left(\frac{x_{1}-x}{2}\right)+ \\ \sin \left(\frac{x-x_{0}+h}{2}\right) \sin \left(\frac{x_{1}-x}{2}\right) \sin \left(\frac{x_{2}-x}{2}\right) & \\ +\sin \left(\frac{x-x_{0}}{h}\right) \sin ^{2}\left(\frac{x_{2}-x}{2}\right), & {\left[x_{0}, x_{1}\right]} \\ \sin ^{3}\left(\frac{x_{2}-x}{2}\right), & {\left[x_{1}, x_{2}\right]} \\ 0, & \text { otherwise }\end{array}\right.$
$\mathrm{TB}_{1,3}(\mathrm{X})=\frac{1}{\varnothing}\left\{\begin{array}{lr}\sin ^{3}\left(\frac{x-x_{0}+h}{2}\right), & {\left[x_{0}-h, x_{0}\right]} \\ \sin \left(\frac{x-x_{0}+h}{2}\right) \sin ^{2}\left(\frac{x_{2}-x}{2}\right)+ & \\ \sin \left(\frac{x-x_{0}}{2}\right) \sin \left(\frac{x_{2}-x}{2}\right) \sin \left(\frac{x_{\mathrm{a}}-x}{2}\right) & \\ +\sin \left(\frac{x-x_{1}}{2}\right) \sin ^{2}\left(\frac{x_{8}-x}{2}\right), & {\left[x_{0}, x_{1}\right]} \\ \sin ^{3}\left(\frac{x_{2}-x}{2}\right), & {\left[x_{0}, x_{1}\right]} \\ 0 & \text { otherwise }\end{array}\right.$
$\mathrm{T}^{3} \mathrm{~B}_{\mathrm{n}-1}(\mathrm{X})=\frac{1}{\emptyset}\left\{\begin{array}{lr}\sin ^{3} \frac{\left(x-x_{n-8}\right)}{2} & {\left[x_{n-3}, x_{n-2}\right]} \\ \sin \frac{\left(x-x_{n-8}\right)}{2} \sin \frac{\left(x_{n-1}-x\right)}{2}+ & \\ \sin \frac{\left(x-x_{n-8}\right)}{2} \sin \frac{\left(x_{n-x}\right)}{2} \sin \frac{\left(x-x_{n-2}\right)}{2} & \\ +\sin ^{2} \frac{\left(x-x_{n-2}\right)}{2} \sin \frac{\left(x_{n+n-x}\right)}{2} & {\left[x_{n-2}, x_{n-1}\right]} \\ \sin ^{3} \frac{\left(x_{n+1}-x\right)}{2} & {\left[x_{n-1}, x_{n}\right]} \\ 0 & \text { otherwise }\end{array}\right.$

$$
\begin{aligned}
& \mathrm{T}^{3} \mathrm{~B}_{\mathrm{n}}(\mathrm{x})=\frac{1}{6}\left\{\begin{array}{lc}
\sin ^{3} \frac{\left(x-x_{n-2}\right)}{2} & {\left[x_{n-2}, x_{n-1}\right]} \\
\sin ^{2} \frac{\left(x-x_{n-2}\right)}{2} \sin \frac{\left(x_{n}-x\right)}{2}+ & \\
\sin \frac{\left(x-x_{n-2}\right)}{2} \sin \frac{\left(x_{n}+h-x\right)}{2} \sin \frac{\left(x-x_{n-1}\right)}{2} & \\
+\sin ^{2} \frac{\left(x-x_{n-1}\right)}{2} \sin \frac{\left(x_{n+2 h-x}\right)}{2} & {\left[x_{n-1}, x_{n}\right]} \\
0 & \text { otherwise }
\end{array}\right. \\
& \mathrm{TB}_{\mathrm{n}+1,3}(\mathrm{X})=\frac{1}{\varnothing} \begin{cases}\sin ^{3}\left(\frac{x-x_{n-1}}{2}\right), & {\left[x_{n-1}, x_{n}\right]} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Form the boundary conditions equations (9)-(10)) we get :
Since $\sum_{j=-1}^{n+1} C_{j} T^{3} B_{j}\left(x_{0}\right)=\alpha$, then
$\frac{1}{2} C_{-1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)+2 C_{0} \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)+\frac{1}{2} C_{1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)=\alpha$
and since $\sum_{j=-1}^{n+1} C_{j} T^{3} B_{j}\left(x_{n}\right)=\beta$, then
$\frac{1}{2} C_{n-1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 \hbar}{2}\right)+2 C_{n} \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)+\frac{1}{2} C_{n+1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)=\beta$
Also

$$
\begin{aligned}
& -\in \sum_{j=-1}^{n+1} C_{j} B_{j}^{\prime \prime}\left(x_{i}\right)+a\left(x_{i}\right) \sum_{j=-1}^{n+1} C_{j} B_{j}\left(x_{i}\right)=f\left(x_{i}\right) \\
& \mathrm{i}=0
\end{aligned}
$$

$$
\begin{align*}
& \in\left(\frac{3}{4} c_{-1} \csc \left(\frac{3 h}{2}\right)\left[\cot \frac{h}{2}+\cot (h)\right]+\frac{3}{4} c_{0} \csc \left(\frac{3 h}{2}\right)\left[\cot \frac{h}{2}+\cot (h)\right]+\frac{3}{4} c_{1} \csc \left(\frac{3 h}{2}\right)\left[\cot \frac{h}{2}+\right.\right. \\
& \cot (h)])+a\left(x_{0}\right)\left(\frac{1}{2} c_{-1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)+2 c_{0} \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)+\frac{1}{2} c_{1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)\right)= \\
& f\left(x_{0}\right) \tag{13}
\end{align*}
$$

$\mathrm{i}=1$

$$
\in\left(\frac{3}{4} C_{0} \csc \left(\frac{3 h}{2}\right)\left[\cot \frac{h}{2}+\cot (h)\right]-\frac{3}{2} \csc \left(\frac{3 h}{2}\right)\left[\sin \left(\frac{h}{2}\right)+\cos (h) \csc \left(\frac{h}{2}\right)\right]\right)+
$$

$$
a\left(x_{1}\right)\left(\frac{1}{2} c_{0} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)\right.
$$

$$
\begin{equation*}
\left.+2 C_{1} \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)\right)=f\left(x_{1}\right) \tag{14}
\end{equation*}
$$

$\mathrm{i}=2$
$-\in\left(\frac{3}{4} C_{1} \csc \left(\frac{3 h}{2}\right)\left[\cot \frac{h}{2}+\cot (h)\right]\right)+a\left(x_{2}\right)\left(\frac{1}{2} C_{1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)\right)=f\left(x_{2}\right)$
and $\mathrm{i}=\mathrm{n}-2$, then

$$
\begin{align*}
& -\in\left(\frac{3}{4} C_{n-1} \csc \left(\frac{3 h}{2}\right)\left[\cot \frac{h}{2}+\cot (h)\right]\right)+a\left(x_{n-2}\right) \\
& \left(\frac{1}{2} C_{n-1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)\right)=f\left(x_{n-2}\right) \tag{16}
\end{align*}
$$

$\mathrm{i}=\mathrm{n}-1$
$-\in\left(-\frac{3}{2} C_{n-1} \csc \left(\frac{3 h}{2}\right)\left[\sin \left(\frac{h}{2}\right)+\cos (h) \csc \left(\frac{h}{2}\right)\right]+\right.$
$\left.\frac{3}{4} c_{n} \csc \left(\frac{3 \hbar}{2}\right)\left[\cot \frac{h}{2}+\cot (h)\right]\right)+a\left(x_{n-1}\right)$
$\left(2 C_{n-1} \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)+\frac{1}{2} C_{0} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)\right)=f\left(x_{n-1}\right)$
$\mathrm{i}=\mathrm{n}$,
$-\in \quad\left(\frac{3}{4} C_{n-1} \csc \left(\frac{3 h}{2}\right)\left[\cot \frac{h}{2}+\cot (h)\right]-\frac{3}{2} \csc \left(\frac{3 h}{2}\right)\left[\sin \left(\frac{h}{2}\right)+\cos (h) \csc \left(\frac{h}{2}\right)\right]+\right.$
$\left.\frac{3}{4} C_{n+1} \csc \left(\frac{3 h}{2}\right)\left[\cot \left(\frac{h}{2}\right)+\cot (h)\right]\right)+a\left(x_{n}\right)\left(\frac{1}{2} C_{n-1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)+\right.$
$\left.2 C_{n} \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)+\frac{1}{2} C_{n+1} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)\right)=f\left(x_{n}\right)$

From equation(11)-(18), so the coefficient matrix is given by
$\left[\begin{array}{lcc}\mathrm{U} & V & \mathrm{U} \\ -\frac{3}{4} \csc \left(\frac{3 h}{2}\right) & 0 & \frac{3}{4} \csc \left(\frac{3 h}{2}\right) \\ S_{0} & T_{0} & S_{0} \\ 0 & S_{1} & T_{1} \\ 0 & \cdots & S_{2} \\ 0 & \cdots & \cdots \\ 0 & \cdots & \cdots \\ 0 & \cdots\end{array}\right.$

$$
\left.\begin{array}{cccc}
& & & \\
0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & S_{n-1} & 0 & 0 \\
\vdots & T_{n-1} & S_{n-1} & 0 \\
\vdots & S_{n} & T_{n} & S_{n} \\
0 & U & \mathrm{~V} & \mathrm{U}
\end{array}\right]\left[\begin{array}{c}
C_{-1} \\
C_{0} \\
\vdots \\
\vdots \\
C_{n-1} \\
C_{n} \\
C_{n+1}
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
\vdots \\
\vdots \\
f\left(x_{n}\right) \\
\beta
\end{array}\right]
$$

where
$S_{i}=-\frac{3}{4} \in \csc \left(\frac{3 h}{2}\right)\left[\cot \left(\frac{h}{2}\right)+\cot (h)\right]+\frac{1}{2} a\left(x_{i}\right) \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)$
$T_{i}=\frac{3}{2} \in \csc \left(\frac{3 h}{2}\right)\left[\sin \left(\frac{h}{2}\right)+\cos (h) \csc \left(\frac{h}{2}\right)\right]+2 a\left(x_{i}\right) \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)$
$U=\frac{1}{2} \tan \left(\frac{h}{2}\right) \csc \left(\frac{3 h}{2}\right)$
$V=2 \sin \left(\frac{h}{2}\right) \csc \left(\frac{3 \hbar}{2}\right)$ for $\mathrm{i}=0,1,2, \mathrm{n}-2, \mathrm{n}-1, \mathrm{n}$

3 Numerical Results

In this section the purpose is the test of the new method for solving ordinary differential equations of boundary value problems through the following example.

Example:

Consider the following second order boundary value problem subject to boundary conditions:

$$
-\epsilon y^{\prime \prime}+4 y=\frac{(0.3 x)^{10}}{625},
$$

and boundary conditions $\quad y(0)=0, y(1)=0$

N	10^{-1}	10^{-2}	10^{-3}
10	$6.648297183 \times 10^{-10}$	$1.994628381 \times 10^{-8}$	$4.199774960 \times 10^{-9}$
20	$4.180808855 \times 10^{-10}$	$3.324979841 \times 10^{-9}$	$1.953986258 \times 10^{-5}$
40	$3.000763563 \times 10^{-10}$	$1.439594520 \times 10^{-9}$	$2.109720459 \times 10^{-8}$

4 Conclusion:

In present chapter we used new method to solve boundary value problem by using of cubic trigonometric B-spline interpolation it seems that the absolute errors are small enough and acceptable; consequently the results were convincing. Moreover, we found that use TBS interpolation, gives more accurate results in comparison with use of B-spline interpolation.

Reference

[1] Athanassion Nikolis, "Numerical Solution of ordinary differential Equations with Quadratic Trigonometric Splines", E-Notes, 4, pp.142-149, (2004).
[2] Dağ I., O. Ersoy and ö. Kaçmaz, Eskişehir Osmangozi university, "The Trigonometric cubic B-spline Algorithm for Burgers' Equation", 22 July (2014).
[3] Lyche T.and R. Winther, "A stable Recurrence Relation for Trigonometric BSplines", J. Approx. Theory 25, pp. 266-279, (1979)
[4] Nikolis A.,"'Numerical solution of ordinary differential equation with quadratic trigonometric splines", Applied Mathematics E-Notes, Vol. 4 pp. 142-149, (1995).
[5] Nikolis A. and I. Seimenis, "Solving dynamical Systems with Cubic Trigonometric Splines", Applied Mathematics E-notes, Vol. 5, pp. 116-123, (2005).
[6] Per Erik Koch, Tom Lyche, Marian Neamtu and Larry L. Schumaker, "Control Curve and Knot Insertion for Trigonometric Splines", Advances in Computational Mathematics, pp. 405-424, (1995).
[7] Schoenberg, I.J., "Trigonometric Spline Interpolation", J. Math. Mech, Vol. 13, pp. 795-825, (1964).
[8] Tom Lyche, Larry L. Schumaker and Sonya Stanley "Quasi-Interpolation Based on Trigonometric Spline", (1992).

