http://garmian.edu.krd

https://doi.org/10.24271/garmian.127

Contra $(\lambda, \gamma)^*$ -**Continuous Functions**

Sarhad F. Namiq

Mathematics Department, College of Education, University of Garmyan, Kurdistan- Region, Iraq. Email: sarhad.faiq@garmian.edu.krd

Abstract

In this paper, some types of continuous functions via s-operations are introduced such as Contra $(\lambda, \gamma)^*$ -Continuous Functions and investigated. Several properties of these functions are constructed.

1. Introduction

In 1979, Kasahara S[1], introduced operation compact spaces. In 1991, Ogata H.[2], defined operations on topological spaces and associated topology. In 1992, Rehman F.U., and Ahmad B.[3], defined Operations on topological spaces. In 1999, Dontchev J., and Noiri T[4], defined Contra-semi continuous functions. They defined a function $f : X \to Y$ to be contra-continuous if the preimage of every open set of Y is semiclosed in X. In 2003, Ahmad B., and Hussain S.[5], defined γ -Convergence in Topological Spaces. In 2007, Hussain S.[6], defined Gamma-Operations in Topological Spaces. In 2012, S.F.Namiq and A.B.Khalaf defined $(\lambda, \gamma)^*$ -continuous functions[7]. We consider λ as a function defined on SO(X) into P(X) and $\lambda: SO(X) \to P(X)$ is called an s-operation if $V \subseteq \lambda(V)$ for each non-empty semi open set V [7]. It is assumed that $\lambda(\phi) = \phi$ and $\lambda(X) = X$ for any s-operation λ [7]. Let $\lambda: SO(X) \to P(X)$ be an s-operation, then a subset A of X is called a λ^* -open set[8] which is equivalent to λ -open set[9] and λs - open set[10], if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. We see Willard S., General Topology [11], to study some concepts in topological space.

2 Preliminaries

Throughout, *x* denote topological spaces. Let *A* be a subset of *X*, then the closure and the interior of *A* are denoted by Cl(A) and Int(A) respectively. A subset *A* of a topological space (X, τ) is said to be semi open[12](resp. pre open[13], α -open[14], β -open[15]) if $A \subseteq Cl(Int(A))$ (resp. $A \subseteq Int(Cl(A))$, $A \subseteq Int(Cl(Int(A)))$, $A \subseteq Cl(Int(Cl(A)))$).

The family of all semi open (resp. pre open, α -open, β -open) sets in *X* is denoted by $SO(X,\tau)$ or SO(X) (resp. PO(X), $\alpha O(X)$, $\beta O(X)$). The complement of a semi open (resp. pre open, α -open, β -open) set is semi-closed (resp. pre closed, α -closed, β -closed). The family of all semi closed sets in a topological space (X,τ) is denoted by $SC(X,\tau)$ or SC(X). We consider λ as a function defined on SO(X) into P(X) and $\lambda:SO(X) \rightarrow P(X)$ is called an s-operation if $V \subseteq \lambda(V)$ for each non-empty semi open set *V*. It is assumed that $\lambda(\phi) = \phi$ and $\lambda(X) = X$ for any s-operation λ .

Definition 2.1.[9].Let (X,τ) be a topological space and $\lambda: SO(X) \to P(X)$ be an soperation, then a subset A of X is called a λ -open set or λ^* -open set if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ^* -open set is said to be λ^* -closed. The family of all λ^* -open (resp., λ^* -closed) subsets of a topological space (X,τ) is denoted by $SO_{\lambda}(X,\tau)$ or $SO_{\lambda}(X)$ (resp., $SC_{\lambda}(X,\tau)$ or $SC_{\lambda}(X)$).

Proposition 2.2.[7],[16]. For a topological space (X, τ) , $SO_{\lambda}(X) \subseteq SO(X)$.

The following examples show that the converse of the above proposition may not be true in general.

Example 2.3.[7],[16].Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, X\}$. We define an s-operation

 $\lambda: SO(X) \to P(X)$ as $\lambda(A) = A$ if $b \in A$ and $\lambda(A) = X$ otherwise. Here, we have $\{a, c\}$ is semi open set but it is not λ^* -open.

Definition 2.4.[7],[16].Let (X,τ) be a space, an s-operation λ is said to be s-regular if for every semi open sets U and V of $x \in X$, there exists a semi open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$.

Definition 2.5.[8]. Let (X, τ) be a topological space and let *A* be a subset of *X*. Then:

- (1) The λ^* -closure of $A(\lambda Cl(A) = \lambda^* Cl(A))$ is the intersection of all λ^* -closed sets containing A.
- (2) The λ*-interior of A (λInt(A) = λ*Int(A)) is the union of all λ*-open sets of X contained in A.
- (3) A point x∈X, is said to be a λ*-limit point of A if every λ*-open set containing x contains a point of A different from x, and the set of all λ*-limit points of A is called the λ*-derived set of A denoted by λd(A) = λ*d(A).

Proposition 2.6.[7],[16].For each point $x \in X$, $x \in \lambda Cl(A)$ if and only if $V \cap A \neq \phi$, for every $V \in SO_{\lambda}(X)$ such that $x \in V$.

Proposition 2.7.[7],[16]

Let $\{A_{\alpha}\}_{\alpha \in I}$ be any collection of λ^* -open sets in a topological space (X, τ) then $\bigcup_{\alpha \in I} A_{\alpha}$ is a λ^* -open set.

The following example shows that the intersection of two λ^* -open sets need not be λ^* -open.

Example 2.8.[7],[16]

Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \to P(X)$ as:

$$\lambda(A) = \begin{cases} A & \text{if } A \neq \{a\}, \{b\} \\ X & \text{if } A = \{a\} \text{ or } \{b\} \end{cases}$$

We have $\{a,b\}$ and $\{b,c\}$ are λ^* -open sets but $\{a,b\} \cap \{b,c\} = \{b\}$ is not λ^* -open.

From Proposition 2.7 and the above example we notice that the family of all λ^* -open sets of a space *X* is a supra topology and need not be a topology in general.

Example 2.9.[7],[<u>16</u>]

Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \to P(X)$ as:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{b\} \text{ or } \{a,b\} \text{ or } \{a,c\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$

Then we can easily find the following families of sets:

 $SO(X) = P(X) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\};$

 $SO_{\lambda}(X) = \{\phi, \{b\}, \{a, b\}, \{a, c\}, X\};$

Proposition 2.10. [7], [16]. Let λ be an s-regular s-operation. If A and B are λ^* -open sets in X, then $A \cap B$ is also a λ^* -open set.

Proposition 2.11. [7],[16]. Let (X,τ) be a topological space and $A \subseteq X$. Then A is

 $a\lambda^*$ -closed subset of X if and only if $\lambda d(A) \subseteq A$.

Proposition 2.12.[7],[16]. For subsets *A*, *B* of a topological space (X, τ) , the following statements are true.

- (1) $A \subseteq \lambda Cl(A)$.
- (2) $\lambda Cl(A)$ is λ^* -closed set in X.
- (3) $\lambda Cl(A)$ is smallest λ^* -closed set which contain A.
- (4) A is λ^* -closed set if and only if $A = \lambda Cl(A)$.

- (5) $\lambda Cl(\phi) = \phi$ and $\lambda Cl(X) = X$.
- (6) If A and B are subsets of space X with $A \subseteq B$. Then $\lambda Cl(A) \subseteq \lambda Cl(B)$.
- (7) For any subsets A, B of a space (X,τ) , $\lambda Cl(A) \cup \lambda Cl(B) \subseteq \lambda Cl(A \cup B)$.
- (8) For any subsets A, B of a space (X,τ) , $\lambda Cl(A \cap B) \subseteq \lambda Cl(A) \cap \lambda Cl(B)$.

Proposition 2.13.[7],[16]. Let(X, τ) be a topological space and $A \subseteq X$. Then

 $\lambda Cl(A) = A \cup \lambda d(A).$

Proposition 2.14.[7],[16]. For a subset A of a topological space (X, τ) ,

 $\lambda Int(A) = A \setminus \lambda d(X \setminus A).$

Proposition 2.15. [7],[16]. For any subset *A* of a topological space *X*. The following statements are true.

- (1) $X \setminus \lambda Int(A) = \lambda Cl(X \setminus A).$
- (2) $\lambda Cl(A) = X \setminus \lambda Int(X \setminus A).$
- (3) $X \setminus \lambda Cl(A) = \lambda Int(X \setminus A).$
- (4) $\lambda Int(A) = X \setminus \lambda Cl(X \setminus A).$

Theorem 2.16.[7],[16]. Let *A*,*B* be subsets of *X*. If $\lambda : SO(X) \rightarrow P(X)$ is an s-regular s-

operation, then:

- (1) $\lambda Cl(A \cup B) = \lambda Cl(A) \cup \lambda Cl(B)$. (2) $\lambda Int(A \cap B) = \lambda Int(A) \cap \lambda Int(B)$.
- (3)

We can define the following example and remark:

Definition 2.17

Let (X,τ) be a topological space and let $x \in X$. A subset N of X is said to be a λ^* neighbourhood $(\lambda^*$ -nhd) of x if and only if there exists a λ^* -open set V such that $x \in V \subseteq N$. The family of all λ^* -neighbourhood of x, denoted by $\lambda N(x)$.

Remark 2.18

Every λ^* -open set in X which contain $x \in X$ is λ^* -neighbourhood of x, but conversely is not true, in Example 2.7, we have $\{b,c\}$ is λ^* -nhd of b, but it is not λ^* -open set

Definition 2.19

Let (X, τ) and (Y, σ) be two topological spaces. A function $f : (X, \tau) \to (Y, \sigma)$ is called:

(1) Irresolute [17], if $f^{-1}(V)$ is semi open in X for every semi open set V of Y.

(2) Pre continuous [13], if $f^{-1}(V)$ is pre open in X for every open set V of Y.

(3) Semi continuous [12], if $f^{-1}(V)$ is a semi open set in X, for each open set V in Y.

- (4) α -continuous[18], if $f^{-1}(V)$ is α -open in X for every open set V of Y.
- (5) Contra-semi-continuous[4], if $f^{-1}(V)$ is semi closed in X for each open set V of Y.

(6) α -irresolute[19], if $f^{-1}(V)$ is α -open set in X for each α -open set V of Y.

- (7) β -continuous[15], if $f^{-1}(V)$ is β -open in X for every open set V of Y.
- (8) β -irresolute[20], if $f^{-1}(V)$ is β -open in X for every β -open set V of Y.
- (9) Pre-irresolute[21], if $f^{-1}(V)$ is preopen set in X for each preopen set V of Y.

Proposition 2.20[9]

For any topological space (X, τ) , we have:

- (1) If SO(X) is indiscrete, then $SO_{\lambda}(X)$ is also indiscrete.
- (2) If $SO_{\lambda}(X)$ is discrete, then SO(X) is also discrete.

Definition 2.21.[7]. A subset *A* of a topological space (X,τ) is said to be generalized λ -closed (briefly. g- λ -closed) if $\lambda Cl(A) \subseteq U$, whenever $A \subseteq U$ and *U* is a λ -open set in (X,τ) .

We say that a subset B of X is generalized λ -open (briefly. g- λ -open) if its

complement $X \setminus B$ is generalized λ -closed in (X, τ) .

In the following proposition we show every λ -closed subset of *X* is g- λ -closed.

Proposition 2.22.[7]. Every λ -closed set is g- λ -closed.

The reverse claim in the above proposition is not true in general. Next we give an example of a g- λ -closed set which is not λ -closed.

Example 2.23.[7]. Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation

 $\lambda: SO(X) \to P(X)$ as $\lambda(A) = A$ if $A = \{a\}$ and $\lambda(A) = X$ otherwise. Then, if we let

 $A = \{a, b\}$, and since the only λ -open supersets of A is X, so A is $g - \lambda$ -closed but it is not λ -closed.

Proposition 2.24.[7]. The intersection of a g- λ -closed set and a λ -closed set is always g- λ -closed.

We used [7], [16] for getting the following results.

We introduce the concept of $(\lambda, \gamma)^*$ -continuous function and study some of its basic properties. Also we define $(\lambda, \gamma)^*$ -open(closed) functions, moreover some properties of these functions are studied. Throughout, (X, τ) , (Z, ρ) and (Y, σ) are topological spaces and λ, η and γ are s-operations on the family of semi open sets of the topological spaces respectively.

Definition 2.25

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be $(\lambda,\gamma)^*$ -continuous, if for each x of X and each γ^* -open set V of Y containing f(x) there exists a λ^* -open set U of X such that $x \in U$ and $f(U) \subseteq V$.

Theorem 2.26

Let $f:(X,\tau) \to (Y,\sigma)$ be a function, then f is $(\lambda,\gamma)^*$ -continuous if and only if for each γ^* -open set B in Y, $f^{-1}(B)$ is λ^* -open in X.

By the followings examples we can show that a $(\lambda, \gamma)^*$ -continuous function is different from continuous (semi continuous, α -continuous, pre continuous, β -continuous, irresolute, α -irresolute, pre irresolute, β -irresolute) function in general.

Example 2.27

Let $X=Y=\{a,b,c\}, \tau=P(X)$ and $\sigma=P(Y)$. We define an s-operation $\lambda: SO(X) \to P(X)$ by :

$$\lambda(A) = \begin{cases} A & \text{if } A = \{c\} \text{ or } \{a,b\} \text{ or } \{a,c\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$

And $\gamma: SO(Y) \to P(Y)$ be a γ -identity s-operation. Then the identity function $f:(X,\tau) \to (Y,\sigma)$ is continuous, semi continuous, α -continuous, pre continuous, β -continuous, irresolute, α -irresolute, pre irresolute, β -irresolute, but it is not $(\lambda,\gamma)^*$ -continuous since $\{b\}$ is γ^* -open set but $f^{-1}(\{b\}) = \{b\}$ is not λ^* -open.

Example 2.28

Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. We define an s-operation $\lambda: SO(X) \rightarrow P(X)$ by:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$

The function $f:(X,\tau) \to (X,\tau)$ defined by f(b) = c, f(c) = b and f(a) = a is $(\lambda, \gamma)^*$ continuous, but it is not continuous, semi continuous, α -continuous, pre continuous, β continuous, irresolute, α -irresolute, pre irresolute and β -irresolute. Since $\{c\}$ is open set and $f^{-1}(\{c\}) = \{b\}$, but $\{b\}$ is not open, semi open, α -open, pre-open and β -open.

Proposition 2.29

- If f: (X, τ) → (Y, σ) is (λ, γ)*-continuous and (Y, σ) is indiscrete space, then f is semi continuous.
- (2) If $SO_{\lambda}(X)$ is discrete space, then any function $f: (X, \tau) \to (Y, \sigma)$ is $(\lambda, \gamma)^*$ -continuous.

Theorem 2.30

- Let $f:(X,\tau) \to (Y,\sigma)$ be a function. Then the following statements are equivalent:
- (1) f is $(\lambda, \gamma)^*$ -continuous.
- (2) The inverse image of each γ^* -closed set in *Y* is a λ^* -closed set in *X*.
- (3) $\lambda Cl(f^{-1}(V)) \subseteq f^{-1}(\gamma Cl(V))$, for every $V \subseteq Y$.
- (4) $f(\lambda Cl(U)) \subseteq \gamma Cl(f(U))$, for every $U \subseteq X$;
- (5) $\lambda Bd(f^{-1}(V)) \subseteq f^{-1}(\gamma Bd(V))$, for every $V \subseteq Y$.
- (6) $f(\lambda d(U)) \subseteq \gamma Cl(f(U))$, for every $U \subseteq X$.
- (7) $f^{-1}(\gamma Int(V)) \subseteq \lambda Int(f^{-1}(V))$, for every $V \subseteq Y$.

Proposition 2.31

If the functions $f:(X,\tau) \to (Z,\rho)$ is $(\lambda,\eta)^*$ -continuous and $g:(Z,\rho) \to (Y,\sigma)$ is

 $(\eta, \gamma)^*$ -continuous, then $g \circ f : (X, \tau) \to (Y, \sigma)$ is $(\lambda, \gamma)^*$ -continuous.

Definition 2.32

A function $f:(X,\tau) \to (Y,\sigma)$ is said to be $(\lambda,\gamma)^*$ -open $((\lambda,\gamma)^*$ -closed), if for any λ^* -open $(\lambda^*$ -closed) set A of (X,τ) , f(A) is γ^* -open $(\gamma^*$ -closed).

Theorem 2.33

Suppose that $f:(X,\tau) \to (Y,\sigma)$ is $(\lambda,\gamma)^*$ -continuous and $(\lambda,\gamma)^*$ -closed function, then:

- (1) For every $g \lambda^*$ -closed set A of (X, τ) the image f(A) is a $g \gamma^*$ -closed set.
- (2) For every $g \gamma^*$ -closed set B of (Y, σ) the inverse set $f^{-1}(B)$ is a $g \lambda^*$ -closed set.

Corollary 2.34

If $f:(X,\tau) \to (Y,\sigma)$ is a bijective function, then the following statement are equivalent.

- (1) f is $(\lambda, \gamma)^*$ -homeomorphism.
- (2) $f(\lambda Cl(A)) = \gamma Cl(f(A))$ for all $A \subseteq X$.
- (3) $\lambda Cl(f^{-1}(B)) = f^{-1}(\gamma Cl(B))$ for all $B \subset Y$.
- (4) $f(\lambda Int(A)) = \gamma Int(f(A))$ for all $A \subseteq X$.
- (5) $\lambda Int(f^{-1}(B)) = f^{-1}(\gamma Int(B))$ for all $B \subset Y$.

3.1 Contra (λ, γ) -Continuous Function

In this section, we introduce the concept of contra $(\lambda, \gamma)^*$ -continuous function and study some of its basic properties, also we compare it with $(\lambda, \gamma)^*$ -continuous, and other types of functions. Moreover, we give a new property of functions which we call $(\lambda, \gamma)^*$ -interior property.

Definition 3.1

A function $f:(X,\tau) \to (Y,\sigma)$, is said to be contra $(\lambda,\gamma)^*$ -continuous if for every γ^* -open subset H of Y, $f^{-1}(H)$ is λ^* -closed in X.

Definition 3.2

For any s-operation $\lambda: SO(X) \to P(X)$ and any subset A of a space (X, τ) , the λ^* -kernel of A, denoted by $\lambda Ker(A)$, is defined as:

 $\lambda Ker(A) \ (\lambda^* Ker(A) [\underline{8}]) = \bigcap \{ G \in SO_{\lambda}(X) : A \subseteq G \}.$

Lemma 3.3

Let X be a space, and $\lambda : SO(X) \to P(X)$ be an s-operation and $A \subseteq X$. Then $\lambda Ker(A) = \{ x \in X : \lambda Cl(\{x\}) \cap A \neq \phi \}.$

Proof: Let $x \in \lambda Ker(A)$ and $\lambda Cl(\{x\}) \cap A = \phi$. Then $x \notin X \setminus \lambda Cl(\{x\})$, which is $a\lambda^*$ -open set containing A. Thus $x \notin \lambda Ker(A)$, a contradiction.

Conversely, let $x \in X$ be such that $\lambda Cl(\{x\}) \cap A \neq \phi$. If possible, let $x \notin \lambda Ker(A)$. Then there exist $a\lambda^*$ -open set G such that $x \notin G$ and $A \subseteq G$. Let $y \in \lambda Cl(\{x\}) \cap A$. This implies that $y \in \lambda Cl(\{x\})$ and $y \in G$, which gives $x \in G$, a contradiction.

Theorem 3.4

Let (X,τ) be a topological space, A and B be a subsets of X. Then:

(1) $x \in \lambda Ker(A)$ if and only if $A \cap F \neq \phi$; for any λ^* -closed set *F* that contains *x*.

(2) $A \subseteq \lambda Ker(A)$ and $A = \lambda Ker(A)$ if A is λ^* -open.

(3) If $A \subseteq B$, then $\lambda Ker(A) \subseteq \lambda Ker(B)$.

Proof. Obvious.

Theorem 3.5

For a function $f:(X,\tau) \to (Y,\sigma)$, the following properties are equivalent

(1) *f* is contra $(\lambda, \gamma)^*$ -continuous.

- (2) for every γ^* -closed subset F of Y, $f^{-1}(F)$ is λ^* -open in X.
- (3) for each $x \in X$ and each γ^* -closed subset F of Y containing f(x), there exists a λ^* -open set U of X containing x such that $f(U) \subset F$.
- (4) $f(\lambda Cl(A)) \subseteq \gamma Ker(f(A))$ for every subset A of X.
- (5) $\lambda Cl(f^{-1}(B)) \subseteq f^{-1}(\gamma Ker(B))$ for every subset B of Y.

Proof. The equivalences of (1) and (2) and (3) are obvious.

(2) \Rightarrow (4): Let A be any subset of X. Suppose that $y \notin \gamma Ker(f(A))$. Then by Lemma 3.3, there exists a γ^* -closed set F containing y such that f(A) $\cap F = \phi$. Thus, we have $A \cap f^{-1}(F) = \phi$ and since $f^{-1}(F)$ is λ^* -open we have $\lambda Cl(A) \cap f^{-1}(F) = \phi$. Therefore, we obtain $f(\lambda Cl(A)) \cap F = \phi$ hence $y \notin f(\lambda Cl(A))$. This implies that $f(\lambda Cl(A)) \subseteq \gamma Ker(f(A))$.

(4) \Rightarrow (5): Let B be any subset of Y. By (4), we have $f(\lambda Cl(f^{-1}(B))) \subset$ $\gamma Ker(f(f^{-1}(B))) \subset \gamma Ker(B)$ and thus $\lambda Cl(f^{-1}(B)) \subset f^{-1}(\gamma Ker(B))$.

(5) \Rightarrow (1): Let V be any γ^* -open set of Y. Then, we have $\lambda Cl(f^{-1}(V))$ $\subset f^{-1}(\gamma Ker(V)) = f^{-1}(V)$ and $\lambda Cl(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is λ^* -closed in X.

Remark 3.6

In fact contra $(\lambda, \gamma)^*$ -continuity and $(\lambda, \gamma)^*$ -continuity are independent.

Example 3.7

Let $X = \{a, b\} = Y$, $\tau = P(X)$ and $\sigma = P(Y)$. We define an s-operation $\lambda: SO(X) \to P(X)$ as:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$
 Also the s-operation $\gamma : SO(Y) \to P(Y)$ defined

as:

$$\gamma(B) = \begin{cases} B & \text{if } B = \{b\} \text{ or } \phi \\ Y & \text{Otherwise} \end{cases}$$
. Then the identity function $f: (X, \tau) \to (X, \sigma)$ is

contra $(\lambda, \gamma)^*$ -continuous but it is not $(\lambda, \gamma)^*$ -continuous, since we have $\{b\}$ is λ^* closed set but $f^{-1}(\{b\}) = \{b\} \notin SO_{2}(X)$.

Example 3.8

Let $X = \{a, b\} = Y$, $\tau = P(X)$ and $\sigma = P(Y)$. We define an s-operation $\lambda : SO(X)$ $\rightarrow P(X)$ by : $\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$. Also the s-operation $\gamma : SO(Y) \to P(Y)$ defined as: $\gamma(B) = \begin{cases} B & \text{if } B = \{b\} \text{ or } \phi \\ Y & \text{Otherwise} \end{cases}$. A function $f:(X,\tau) \to (X,\sigma)$ defined as f(a) = b

and f(b) = a is $(\lambda, \gamma)^*$ -continuous but it is not contra $(\lambda, \gamma)^*$ -continuous, since we have $\{a\}$ is λ^* -closed set but $f^{-1}(\{a\}) = \{b\} \notin SO_{\lambda}(X)$.

Definition 3.9

A function $f:(X,\tau) \to (Y,\sigma)$ is said to satisfy the $(\lambda,\gamma)^*$ -interiority condition if $\lambda Int(f^{-1}(\gamma Cl(V))) \subseteq f^{-1}(V)$ for each γ^* -open set V of (Y, σ) .

Theorem 3.10

If $f:(X,\tau) \to (Y,\sigma)$ is a contra $(\lambda,\gamma)^*$ -continuous function and satisfies the $(\lambda, \gamma)^*$ -interiority condition, then *f* is $(\lambda, \gamma)^*$ -continuous.

Proof. Let V be any γ^* -open subset of Y. Since f is contra $(\lambda, \gamma)^*$ -continuous and $\gamma Cl(V)$ is γ^* -closed, by Theorem 3.5, $f^{-1}(\gamma Cl(V))$ is λ^* -open in X. By the hypothesis on f, $f^{-1}(V) \subseteq f^{-1}(\gamma Cl(V)) = \lambda Int(f^{-1}(\gamma Cl(V)))$ \subset $\lambda Int(f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore, we obtain $\lambda Int(f^{-1}(V)) = f^{-1}(V)$ and consequently $f^{-1}(V)$ is λ^* -open set in X. This shows that f is a $(\lambda, \gamma)^*$ continuous function.

Through the following examples we can show that contra $(\lambda, \gamma)^*$ -continuous and contra-semi-continuity are independent concepts :

Example 3.11

Let $Y = X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X)$ $\rightarrow P(X)$ as:

 $\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \{c\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$. If $\sigma = P(Y)$ and γ is γ -identity s-operation, then the function $f:(X,\tau) \to (Y,\sigma)$, defined by f(a) = c and f(b) = f(c) = b is contrasemi-continuous, but it is not contra $(\lambda, \gamma)^*$ -continuous.

Example 3.12

Let $X = \{a, b\} = Y$, with spaces $\tau = \{\phi, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$. We define an soperation $\lambda: SO(X) \to P(X)$ as $\lambda(A) = X$ for all $\phi \neq A \subset X$ and an s-operation $\gamma: SO(Y) \to P(Y)$ as $\gamma(B) = Y$ for all $\phi \neq B \subseteq X$. Then the identity function $f:(X,\tau) \to (X,\sigma)$ is contra $(\lambda,\gamma)^*$ -continuous but it is not contra-semicontinuous.

Definition 3.13

A topological space (X, τ) is said to be locally λ^* -indiscrete if every λ^* -open set of X is λ^* -closed in X.

Through the following examples we can show that the property locally λ^* indiscrete and locally indiscrete are independent.

Example 3.14

Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \to P(X)$ as:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \{c\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$
. Clearly (X, τ) is locally indiscrete, but it is

not locally λ^* -indiscrete, because $\{a\} \in SO_{\lambda}(X)$ but $\{a\} \notin SC_{\lambda}(X)$.

Example 3.15

Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Define an s-operation $\lambda : SO(X) \rightarrow P(X)$ as $\lambda(A) = X$ for all $\phi \neq A \subseteq X$. Clearly (X, τ) is locally λ^* -indiscrete, but it is not locally indiscrete, because $\{a\}$ is an open set but it is not closed.

Theorem 3.16

If $f:(X,\tau) \to (Y,\sigma)$ is a function and X is locally λ^* -indiscrete, then f is

 $(\lambda, \gamma)^*$ -continuous if and only if f is contra $(\lambda, \gamma)^*$ -continuous.

Proof. Let *H* be any γ^* -open set in *Y*. Then by hypothesis $f^{-1}(H) \lambda^*$ -open set in *X*, from the Definition 3.13, $f^{-1}(H) \lambda^*$ -closed set in *X*. Hence *f* is contra $(\lambda, \gamma)^*$ - continuous.

Conversely, Let B be any γ^* -closed set in Y. Then $f^{-1}(B)$ is a λ^* -open set in X by Theorem 3.5(2). Since X is locally λ^* -indiscrete, so $f^{-1}(B)$ is a λ^* -closed set in X. Hence f is $(\lambda, \gamma)^*$ -continuous by Theorem 2.30(2).

The composition of two contra $(\lambda, \gamma)^*$ -continuous functions need not be contra $(\lambda, \gamma)^*$ -continuous.

Example 3.17

Let $X = \{a, b\} = Y$, $\tau = P(X)$ and $\sigma = P(Y)$. We define an s-operation $\lambda: SO(X) \rightarrow P(X)$ such that:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \text{ or } \phi \\ X & \text{Otherwise} \end{cases}$$
 Also the s-operation $\gamma: SO(Y) \to P(Y)$ defined as:
$$\gamma(B) = \begin{cases} B & \text{if } B = \{b\} \text{ or } \phi \\ Y & \text{Otherwise} \end{cases}$$
.

Then the identity functions $f:(X,\tau) \to (X,\sigma)$ and $g:(X,\sigma) \to (X,\tau)$ are contra $(\lambda, \gamma)^*$ -continuous but $g \circ f : (X, \tau) \to (X, \tau)$ is not contra $(\lambda, \gamma)^*$ continuous.

Theorem 3.18

Let $f:(X,\tau) \to (Z,\rho)$ and $g:(Z,\rho) \to (Y,\sigma)$ be two functions. Then:

- (1) $g \circ f: (X,\tau) \to (Y,\sigma)$ is contra $(\lambda,\gamma)^*$ -continuous, if g is $(\eta,\gamma)^*$ -continuous and f is contra $(\lambda, \eta)^*$ -continuous.
- (2) $g \circ f$ is contra $(\lambda, \gamma)^*$ -continuous, if g is contra $(\eta, \gamma)^*$ -continuous and f is $(\lambda, \eta)^*$ -continuous.

(3) $g \circ f$ is contra $(\lambda, \gamma)^*$ -continuous, if g and f are $(\eta, \gamma)^*$ -continuous and $(\lambda, \eta)^*$ -continuous respectively and (Z, ρ) is locally η^* -indiscrete.

Proof. (1) Let $V \in SO_{\gamma}(Y)$. Then $g^{-1}(V) \in SO_{\eta}(Z)$ and $f^{-1}(g^{-1}(V)) \in SO_{\lambda}(X)$ since g is $(\eta, \gamma)^*$ -continuous and f is contra $(\lambda, \eta)^*$ -continuous. It follows that $(g \circ f)^{-1} \in SC_{\lambda}(X)$. Hence $g \circ f$ is contra $(\lambda, \gamma)^*$ -continuous.

(2) Let
$$V \in SO_{\gamma}(Y)$$
, then $g^{-1}(V) \in SC_{\eta}(Z)$ and $f^{-1}(g^{-1}(V)) \in SC_{\lambda}(X)$ since g is

contra $(\eta, \gamma)^*$ -continuous and f is $(\lambda, \eta)^*$ -continuous. It follows that $(g \circ f)^{-1} \in SC_{\lambda}(X)$. Hence $g \circ f$ is contra $(\lambda, \gamma)^*$ -continuous.

(3) Let $V \in SO_{\gamma}(Y)$, then $g^{-1}(V) \in SO_{\eta}(Z)$ and $g^{-1}(V) \in SC_{\eta}(Z)$ since g is $(\eta, \gamma)^*$ continuous and (Z, ρ) is locally η^* -indiscrete, then $f^{-1}(g^{-1}(V)) \in SO_{\lambda}(X)$ since f is $(\lambda, \eta)^*$ -continuous. Hence $g \circ f$ is contra $(\lambda, \gamma)^*$ -continuous.

References

- 1. Kasahara, S., Operation-compact spaces. Math. Japon., 1979. 24: p. 97-105.
- 2. Ogata, H., *Operations on topological spaces and associated topology*. Math. Japon., 1991. **36**: p. 175-184.
- 3. Rehman, F. and B. Ahmad, *Operations on topological spaces I*. Math. Today, 1992. **10**: p. 29-36.
- 4. Jankovic, D., *On functions with* α*-closed graphs*. Glas. Mat., 1983. **18**(38): p. 141-148.
- 5. B. Ahmad, S.H., *Properties of γ-operations in topological spaces*. Aligarh Bull. Math, 2003: p. 45-51.
- 6. S., H., *Gamma-Operations in Topological Spaces*. Bahauddin Zakariya University Multan, 2007.
- 7. Alias B. Khalaf, S.F.N., *Generalized* λ -*Closed Sets and* $[(\lambda, \gamma)]^{*-}$ *Continuous Functions*. International Journal of Scientific & Engineering Research, 2012. **3**(12).
- 8. F.Namiq, S., $\lambda^* R_0$ and $\lambda^* R_1$ Spaces. Journal of Garmyan University, 2014(3).

- 9. F.Namiq, S., New types of continuity and separation axiom based operation in topological spaces. 2011, Sulaimani.
- 10. Khalaf, A.B. and S.F. Namiq, *[[lambda]. sub. c]-open sets and [[lambda]. sub. c]-separation axioms in topological spaces.* Journal of Advanced Studies in Topology, 2013. **4**(1): p. 150-159.
- 11. Willard, S., General topology. 1970: Courier Corporation.
- 12. Levine, N., *Semi-open sets and semi-continuity in topological spaces*. The American Mathematical Monthly, 1963. **70**(1): p. 36-41.
- 13. Mashhour, A. On precontinuous and weak precontinuous mappings. in Proc. Math. Phys. Soc. Egypt. 1982.
- 14. Njästad, O., *On some classes of nearly open sets*. Pacific journal of mathematics, 1965. **15**(3): p. 961-970.
- El-Monsef, M.A., S. El-Deeb, and R. Mahmoud, β-open sets and βcontinuous mappings. Bull. Fac. Sci. Assiut Univ, 1983. 12(1): p. 77-90.
- 16. Alias B. Khalaf, S.F.N., *Generalized* λ -*Closed Sets and* $[(\lambda, \gamma)]$ ^*-*Continuous Functions*. Journal of Garmian University 2017. **Preprint**.
- 17. Crossley, S. and S. Hildebrand, *Semi-topological properties*. Fundamenta Mathematicae, 1972. **74**(3): p. 233-254.
- 18. Mashhour, A., I. Hasanein, and S. El-Deeb, α -continuous and α -open mappings. Acta Mathematica Hungarica, 1983. **41**(3-4): p. 213-218.
- 19. Maheshwari, S. and S. Thakur, *On* α *-irresolute mappings*. Tamkang J. Math, 1980. **11**(2): p. 209-214.
- 20. Mahmoud, R. and M.A. El-Monsef, β -irresolute and β -topological invariant. Proc. Pakistan Acad. Sci, 1990. **27**(3): p. 285-296.
- 21. K, R.I.L.a.V.M., *On α -continuity in topological spaces*. Acta Mathematica Hungarica 1985. **45**((1-2)): p. 27-32.