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Abstract

In this paper, some types of continuous functions via s-operations are introduced such as

Contra (/1,7/)* -Continuous Functions and investigated. Several properties of these
functions are constructed.

1. Introduction

In 1979, Kasahara S[1], introduced operation compact spaces. In 1991, Ogata H.[2],
defined operations on topological spaces and associated topology. In 1992, Rehman
F.U., and Ahmad B.[3], defined Operations on topological spaces. In 1999, Dontchev J.,
and Noiri T[4],defined Contra-semi continuous functions. They defined a function
f+ X — Yto be contra-continuous if the preimage of every open set of ¥ is semi-
closed in X. In 2003, Ahmad B., and Hussain S.[5], defined y -Convergence in
Topological Spaces. In 2007, Hussain S.[6], defined Gamma-Operations in Topological
Spaces. In 2012, S.F.Namiq and A.B.Khalaf defined (4, y)"-continuous functions[7].
We consider Aas a function defined on SO(X ) into P(X )and 2:SO(X ) —>P(X) is

called an s-operation if V. < A/ ) for each non-empty semi open setV [7]. It is assumed
that 1(¢) =¢ and A(X ) =X for any s-operation A[7]. Let 1:SO(X)—> P (X ) be an
s-operation, then a subset A of X is called a 4™ -open set[8] which is equivalent to A -open

set[9] and As - open set[10],if for each x € A there exists a semi open set U such that
X eU and AU) < A. We see Willard S., General Topology [11], to study some

concepts in topological space.
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2 Preliminaries

Throughout, x denote topological spaces. Let Abe a subset of X, then the closure
and the interior of A are denoted by CI(A) and Int(A) respectively. A subset A of a
topological space (X,7)is said to be semi open[12]( resp. pre open[13], «-open[14],
S -open[15]) if AcCI(Int(A)) (resp. A c Int(CI(A)), A c Int(Cl(Int(A)), Ac
CI(Int(CI(A)))).

The family of all semi open ( resp. pre open, «-open, S-open) sets in X is denoted by
SO(X,z)or SO(X) (resp. PO(X), aO(X ), SO(X )). The complement of a semi open
( resp. pre open, « -open, S-open) set is semi-closed ( resp. pre closed , a-closed , S-
closed ). The family of all semi closed sets in a topological space (X,7)is denoted by
SC(X,z)or SC(X). We consider A as a function defined on SO(X) into P(X) and
A:SO(X) — P(X)is called an s-operation if V < A(V)for each non-empty semi open
set V. It is assumed that A(¢) =¢ and A(X) = X for any s-operation A.

Definition 2.1.[9].Let (X, ) be a topological space and 1:SO(X) — P(X) be an s-

operation, then a subset Aof X is called a 4 -open set or A" -open set if for each

X € A there exists a semi open set U such that xeU and A(U) < A The complement of a
A~ -open set is said to be A" -closed. The family of all A™-open ( resp., A -closed )
subsets of a topological space (X,z)is denoted by SO, (X,z) or SO,(X) (resp.,
SC,(X,z) or SC,(X) ).

Proposition 2.2.[7],[16].For a topological space (X,z), SO, (X) < SO(X).

The following examples show that the converse of the above proposition may not be

true in general.
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Example 2.3.[7],[16].Let X ={a,b,c}, and 7={p{a}, X}. We define an s-operation
A:SO(X) —> P(X) as A(A)=A if be Aand A(A) = X otherwise. Here, we have {a,c}
is semi open set but it is not A" -open.

Definition 2.4.[7],[16].Let (X,7)be a space, an s-operation A is said to be s-regular if
for every semi open sets U and V of x e X, there exists a semi open set W containing x
such that AW)c AU) N A(V).

Definition 2.5.[8]. Let(X,z) be atopological space and let Abe a subset of X.Then:

(1) The A" -closure of A (ACI(A)=A"CI(A)) is the intersection of all 1" -closed
sets containing A

(2) The A" -interior of A (AInt(A) =A"Int(A) ) is the union of all 1" -open sets of
X contained in A

(3) A point xe X, is said to be a A" -limit point of A if every A”-open set containing
x contains a point of Adifferent from x,and the set of all A”-limit points of Ais

called the 2™ -derived set of A denoted by Ad(A) =A"d(A).
Proposition 2.6.[7],[16].For each point xe X, xe ACI(A) ifand only if V m A= ¢, for
every V € SO, (X) such that xeV.
Proposition 2.7.[7],[16]

Let{Aa}a be any collection of A” -open sets in a topological space (X,7)

el

then | J A, isa A" -open set.

a el

The following example shows that the intersection of two A" -open sets need not be

A~ -open.
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Example 2.8.[7],[16]
Let X ={a,b,c}, and 7 =P(X). We define an s-operation 1:SO(X) —» P(X) as:

A if Az{a}{b}

AA)=1" .
X if A={a}or{b}
We have{a,b}and{b,c}are 1" -open sets but{a,b}~{b,c}={b}is not A" -open.

From Proposition 2.7 and the above example we notice that the family of all 1" -open
sets of a space X is a supra topology and need not be a topology in general.
Example 2.9.[7],[16]

Let X ={a,b,c}, and = =P(X). We define an s-operation A:SO(X) — P(X) as:

A if A={b}or{ab}or{a,c}org

A(A) = i
X Otherwise

Then we can easily find the following families of sets:
SO(X) =P(X) ={¢.{a}.{b}.{c}{a,b}.{a,c}{b,c}, X};
SO, (X) ={¢.{b}.{a,b}{a,c}, X};
Proposition 2.10. [7],[16]. Let A be an s-regular s-operation. If Aand Bare A -open
setsin X,then AN B isalsoa A -open set.
Proposition 2.11. [7],[16]. Let (X,z) be a topological space and A< X. Then Ais
ald -closed subset of X if and only if Ad(A)c A
Proposition 2.12.[7],[16]. For subsets A, B of a topological space (X,7),the following
statements are true.

(1) Ac ACI(A).

(2) ACI(A) is A -closed setin X.

(3) ACI(A) is smallest 1" -closed set which contain A.

(4) Ais A -closed set if and only if A=ACI(A).
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(5) ACI(p) =¢ and ACI(X) = X.

(6) If Aand B are subsets of space X with Ac B. Then ACI(A) < ACI(B).

(7) For any subsets A, Bofaspace (X,7), ACI(A)uU ACI(B) < ACI(AUB).

(8) For any subsets A, Bof aspace (X,7), ACI(AnB)< ACI(A) N ACI(B).
Proposition 2.13.[7],[16]. Let(X,7) be a topological space and Ac X. Then
ACI(A) =AU Ad(A).
Proposition 2.14.[7],[16]. For a subset Aof a topological space (X,7),
AInt(A) = A\ Ad (X \ A).
Proposition 2.15. [7],[16]. For any subset Aof a topological space X.The following
statements are true.

(1) X\ AInt(A)=ACI(X \ A).

(2) ACI(A) =X\ AInt(X \ A).

(3) X \ACI(A) = AInt(X \ A).

(4) AInt(A) = X \ACI(X \ A).
Theorem 2.16.[7],[16]. Let A,B be subsets of X. If 1:SO(X)— P(X)is an s-regular s-
operation, then:

(1) ACI(AuUB)=ACI(A) U ACI(B).

(2) AInt(ANB) = AInt(A) N AInt(B).

3)
We can define the following example and remark:
Definition 2.17

Let (X,7) be a topological space and let xe X. A subset N of X issaidtobea A -

neighbourhood (A -nhd) of x if and only if there exists a A -open set V such that
xeV < N. The family of all A" -neighbourhood of x, denoted by AN (X).
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Remark 2.18

Every A -open set in X which contain xe X is A -neighbourhood of X, but
conversely is not true, in Example 2.7, we have {b,c}is A" -nhd of b, but it is not 1" -
open set
Definition 2.19

Let(X,7) and (Y,o) be two topological spaces. A function f : (X ,z) —( ,0) is
called:
(1) Irresolute[17], if f (V) is semi open in X for every semi open set VV of Y.
(2) Pre continuous[13], if f (V) is pre open in X for every open set V of Y.
(3) Semi continuous[12], if f (V) is a semi open set in X, for each open set Vin Y.
(4) a -continuous[18], if f (V) is a-open in X for every open set VV of Y.
(5) Contra-semi-continuous[4], if f (V) is semi closed in X for each open set V of Y.
(6) o -irresolute[19], if f(V)is o -open setin X for each o -open setV of Y.
(7) B-continuous[15], if (V) is B-open in X for every open set V of Y.
(8) B-irresolute[20], if f~*(V) is B-open in X for every B-opensetV of Y.

(9) Pre-irresolute[21], if f"(V)is pre open set in X for each pre open set V of Y.

Proposition 2.20[9]
For any topological space (X,7), we have:

(1) If SO(X) is indiscrete, then SO, (X) is also indiscrete.

(2) If SO, (X) isdiscrete, then SO(X) is also discrete.

Definition 2.21.[7]. A subset A of a topological space (X,7) is said to be generalized
A-closed ( briefly. g- A -closed) if ACI(A)cU, whenever A —U and U isa A-open
setin (X,7).
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We say that a subset B of X is generalized A -open (briefly. g- A -open) if its

complement X \Bis generalized A -closed in(X,7).

In the following proposition we show every A -closed subset of X is g- A -closed.
Proposition 2.22.[7]. Every A-closed set is g- A -closed.

The reverse claim in the above proposition is not true in general. Next we give an
example of a g- 4 -closed set which is not A -closed.
Example 2.23.[7]. Let X={a,b,c}, and 7 =P(X). We define an s-operation

A:S0(X) —> P(X)as A(A)=Aif A={a} and A(A) = X otherwise. Then, if we let
A={a,b}, and since the only 1 -open supersets of A is X, so Ais g- A -closed but it is not

A -closed.
Proposition 2.24.[7]. The intersection of a g- A -closed set and a A -closed set is always

g- A -closed.

We used[7],[16] for getting the following results.

We introduce the concept of (4, ) -continuous function and study some of its basic

properties. Also we define (4, ) -open(closed) functions, moreover some properties of
these functions are studied. Throughout, (X ,7), (Z,p) and (Y,o) are topological
spaces and A,n and y are s-operations on the family of semi open sets of the

topological spaces respectively.
Definition 2.25

A function f :(X,7) = (Y,0) is said to be (4,y) -continuous, if for each x of X and

each y -open set V of Y containing f (x) there exists a A" -open set U of X such that

xeUand f(U)c\V.
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Theorem 2.26

Let f:(X,7)—(Y,o) be a function, then f is(4,y) -continuous if and only if for
each y -opensetBinY, f*(B)is A -openin X.

By the followings examples we can show that a (A4,y) -continuous function is
different from continuous ( semi continuous, « -continuous, pre continuous, £ -
continuous, irresolute, « -irresolute, pre irresolute, S -irresolute) function in general.
Example 2.27

Let X=Y={ab,c}, r=P(X) and o=P(Y). We define an s-operation
A:SO(X) — P(X) by:

/1(A)={A if A :{c_:} or {a,b}or {a,c}or ¢

X Otherwise

And 7:SO(Y)—>P(Y) be a y -identity s-operation. Then the identity
function f:(X,7) —(Y,o) is continuous, semi continuous, « -continuous, pre
continuous, f-continuous, irresolute, « -irresolute, pre irresolute, S -irresolute, but it is
not (A,y) -continuous since {b} is " -open set but f *({b}) ={b} is not 1" -open.

Example 2.28
LetX ={a,b,c}, and r={p{a}{c}{a,c}{b.c} X } We define an s-operation
A:SO(X)— P (X)) by:

A if A={a}or
A=A {_} 2

X Otherwise
The function f:(X,7) —(X,7) defined by f(b)=c, f(c)=b and f (a)=a is (4,y) -
continuous, but it is not continuous, semi continuous, « -continuous, pre continuous, S -

continuous, irresolute, « -irresolute, pre irresolute and £ -irresolute. Since {c} is open set

and f *({c})={b}, but {b} is not open, semi open, « -open, pre-open and £ -open.
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Proposition 2.29

(1) If f:(X,7) > (Y,0) is (4,7) -continuous and (Y, &) is indiscrete space, then f

IS semi continuous.
(2)If SO,(X) is discrete space, then any function f : (X,7) — (Y,0) is (4,7) -
continuous.

Theorem 2.30

Let f :(X,7) = (Y,o)be a function. Then the following statements are equivalent:

(1) f is (4,y) -continuous.

(2) The inverse image of each » -closed setin Y isa A -closed set in X.

(3) ACI(f (V) < f*(yCI(V)), forevery V c V.

(4) f(ACIU)) < yCI(f (U)), forevery U < X;

(5) ABd(f*(V)) < f(yBd(V)), foreveryV V.

6) f(AdU)) < yCI(fU)), forevery U cX.

(7 fH(yInt(V)) < Alnt(f*(V)), foreveryV .
Proposition 2.31

If the functions f : (X ,z) = (Z,p)is (4,17) -continuous and g :(Z,p) — ( ,o0)is
(n,7)"-continuous, then go f :(X,7) > (Y,o) is (4,y) -continuous.
Definition 2.32

A function f :(X,7) —>(Y,o) is said to be (4,7) -open ((4,7) -closed ), if for
any A" -open (A" -closed ) set A of (X,7), f(A)is y -open (y -closed ).
Theorem 2.33

Suppose that f:(X,7) —(Y,o) is (4,7) -continuous and (4,7) -closed function,
then:
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(1) For every g- A -closed set A of (X,7)the image f (A)isag -y -closed set.

(2) For every g-y -closed set B of (Y,o)the inverse set f (B)is a g-1 -closed set.
Corollary 2.34

If f:(X,7)—>(Y,o) is a bijective function, then the following statement are
equivalent.

(1) f is (4,7) -homeomorphism.

(2) f(ACI(A)) = yCI(f(A)) forall A cX.

(3) ACI(f X(B))= f*(CI(B)) forall B V.

(4) f(AInt(A))= yInt(f (A)) forall A =X.

(5) Alnt(f1(B)) = f *(yInt(B)) forall B V.

3.1 Contra(A, ¥)-Continuous Function
In this section, we introduce the concept of contra (A, ) -continuous function and

study some of its basic properties, also we compare it with (1, )" -continuous, and other
types of functions. Moreover, we give a new property of functions which we call

(A, 7) -interior property.

Definition 3.1

A function f:(X,7)— (Y,o), is said to be contra (4,7) -continuous if for every

y -open subset H of Y, f *(H) is A -closed in X.
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Definition 3.2
For any s-operation A4:SO(X)— P(X) and any subset A of a space (X,7),

the 1" -kernel of A, denoted by AKer(A), is defined as:
AKer(A) (A'Ker(A)[8])= N{GeSO,(X):AcG}.
Lemma 3.3

Let X be a space, and 4:SO(X) — P(X) be an s-operation and Ac X. Then
AKer(A) ={xe X : ACI({x}) N A= ¢}.
Proof: Let xe AKer(A) and ACI({x}) "A=¢. Then xg X \ACI({x}), which is
a -open set containing A. Thus x ¢ AKer(A), a contradiction.

Conversely, let x € X be such that ACI({x}) "A=¢. If possible, let x ¢

AKer(A).Then there exist a4 -open set G such that x¢G and A cG. Let y
€ ACI({x}) n A This implies that ye ACI({x}) and yeG, which gives xeG, a
contradiction.
Theorem 3.4

Let (X,7) be atopological space, A and B be a subsets of X. Then:

(1) x € AKer(A) if and only if ANF = ¢; for any 1" -closed set F that contains

X.

(2) A < AKer(A) and A =AKer(A) if Ais A -open.

(3) If A =B, then AKer(A) < AKer(B).
Proof. Obvious.

Theorem 3.5
For a function f :(X,7) — (Y, o), the following properties are equivalent

(1) f is contra (4, »)" -continuous.
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(2) for every y -closed subset F of Y, f*(F) is A" -open in X.

(3) for each x eX and each y -closed subset F of Y containing f(x), there
exists a A" -open set U of X containing x such that f (U)cF.

(4) f(ACI(A)) < yKer(f(A)) forevery subset A of X,

(5) ACI(f*(B)) < f *( yKer(B)) for every subset B of Y.

Proof. The equivalences of (1) and (2) and (3) are obvious.
(2)= (4): Let A be any subset of X. Suppose that y ¢ yKer(f(A)). Then by

Lemma 3.3, there exists a » -closed set F containing y such that f(A)
NF =¢ .Thus, we have Anf*(F)=¢ and since f*(F)is A -open we have
ACI(A)~  f(F)=¢. Therefore, we obtain f(ACI(A)F=¢ hence
y ¢ f(ACI(A)). This implies that f (ACI(A)) < yKer(f (A)).

(4) = (5): Let B be any subset of Y. By (4), we have f(ACI(f*(B)))c
yKer(f (f (B))) < yKer(B) and thus ACI(f *(B)) < f *(yKer(B)).

(5) = (1): Let V be any y -open set of Y. Then, we have ACI(f*(V))
c f(yKer(vV))=f (V) and ACI(f *(V))=f (V). This shows that f (V) is

A" -closed in X.

Remark 3.6

In fact contra (A, ») -continuity and (A4, )" -continuity are independent .

Example 3.7
Let X={a,b}=Y, r=P(X) and o=P(Y). We define an s-operation
A:SO(X ) —> P(X) as:
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A if A={a}org

_ . Also the s-operation y:SO(Y) — P(Y) defined
X Otherwise

A(A) :{
as.

. Then the identity function f:(X,7) —>(X,0) Iis

_|B if B={b}or¢
y(B)_{Y Otherwise

contra (A, y)"-continuous but it is not (1,) -continuous, since we have {b}is 1"-

closed set but f *({b}) ={b}¢ SO, (X).

Example 3.8
Let X ={a,b}=Y, r=P(X)and o =P(Y). We define an s-operation 1:SO(X)

— P(X) by:
A if A=

A(A) = ! {a}_» or¢ . Also the s-operationy : SO(Y) — P(Y) defined as:
X Otherwise
B if B= or

y(B)= ! {b_} ¢. A function f:(X,7)—(X,o) definedas f(a)=b
Y  Otherwise

andf (b)=a is (1,y) -continuous but it is not contra (4, ) -continuous, since we
have {a} is 1" -closed set but f *({a}) ={b} & SO, (X).
Definition 3.9

A function f :(X,7) = (Y,o) is said to satisfy the (1, )" -interiority condition if
Alnt(f *(yCl(V))) < f (V) for each y -open set V of (Y,o).
Theorem 3.10

If f:(X,7)—>(Y,o) is a contra (4,y) -continuous function and satisfies the

(A,7)" -interiority condition, then fis (A, )" -continuous.
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Proof. Let V be anyy”-open subset of Y. Since f is contra(4,y) -continuous and
yCI(V) is y -closed, by Theorem 3.5, f *(¥CI(V)) is A" -open in X. By the
hypothesis on f, f7*(V) < f'GCIV)) = Ant(f*QCIV)) <
Alnt(f *(vV)) < f'(V). Therefore, we obtain Alnt(f*(V)) = f*(V) and

consequently f*(V) is A" -open set in X. This shows that f is a (4,%) -

continuous function.

Through the following examples we can show that contra (4,7) -continuous

and contra-semi-continuity are independent concepts :

Example 3.11
Let Y=X={a,b,c}, and z=P(X). We define an s-operation A:SO(X)
— P(X) as:
A if A={a}or{c}or
A(A)= ! { } € ¢. Ifo=P(Y)andy isy -identity s-operation, then
X Otherwise

the function f:(X,7) —» (Y,o), defined by f(a)=cand f(b)= f(c)=b is contra-
semi-continuous, but it is not contra (4, )" -continuous.
Example 3.12

Let X ={a,b}=Y, with spaces 7 ={¢, X} and o ={¢,{b},Y}. We define an s-
operation 4:SO(X) > P(X) as A(A)=X for all A <X and an s-operation
7:SO(Y) > P(Y) as y(B)=Y for all ¢B <X . Then the identity function
f:(X,7) > (X,o0) is contra (1,7) -continuous but it is not contra-semi-

continuous.
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Definition 3.13

A topological space (X,7) is said to be locally A" -indiscrete if every A" -open
set of X is A" -closed in X,

Through the following examples we can show that the property locally A -
indiscrete and locally indiscrete are independent.
Example 3.14

Let X ={a,b,c}, andz =P(X). We define an s-operation 1:SO(X)— P(X)
as:

A if A={a}or{c}or ¢

. . Clearly (X,7) is locally indiscrete, but it is
X Otherwise

/I(A):{

not locally A" -indiscrete, because {a}e SO, (X) but {a}e SC,(X).

Example 3.15

Let X ={a,b,c}, and z ={¢,{a},{b}{a,b}, X}. Define an s-operation
A:SO(X) > P(X) asA(A)= X forall g=A <X . Clearly(X,z)is locally A" -
indiscrete, but it is not locally indiscrete, because {a} is an open set but it is not
closed.

Theorem 3.16

If f:(X,7)—(Y,o) isafunction and X is locally A -indiscrete, then f is
(4,7) -continuous if and only if f is contra (4,7) -continuous.
Proof. Let H be any » -open set in Y. Then by hypothesis f *(H) A" -open set in

X, from the Definition 3.13, f *(H) A" -closed set in X. Hence f is contra (4,7) -

continuous.
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Conversely, Let B be any y -closed set in Y. Then f (B )is a4 -open set in X by
Theorem 3.5(2). Since X is locally 2™ -indiscrete, so f ™(B) is a A -closed set in X.

Hence f is (4,%) -continuous by Theorem 2.30(2).

The composition of two contra (A, 7) -continuous functions need not be contra

(4,7) -continuous.

Example 3.17
Let X ={a,b}=Y, r=P(X) and o =P(Y). We define an s-operation

A:SO(X) — P(X) such that:

A if A={a}or
A(A) = ! {_} ¢ . Also the s-operation y:SO(Y) — P(Y) defined as:
X Otherwise
B if B={b}org
y(B)= ) -
Y  Otherwise

Then the identity functions f:(X,7)—>(X,0) and g: (X,0)— (X,7) are
contra (4,7)" -continuous but go f: (X,7)—(X,r) is not contra (4,7) -

continuous.

Theorem 3.18
Letf :(X,7)>(Z,p0) and g :(Z,p) —>( ,o0) be two functions. Then:

(1) go f:(X,7) > (Y,0) is contra(4,y) -continuous, if g is (,y) -continuous
and f is contra (1,7) -continuous.
(2) go f is contra(4,y) -continuous, if g is contra(r, )" -continuous and f is

(1,17)" -continuous.
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(3) go f is contra(4,y) -continuous, if gand f are (7,)" -continuous and
(A,m7)"-continuous respectively and (Z , p) is locally 7" -indiscrete.

Proof. (1) Let VeSO, (Y). Then g~(V)eSO,(Z) and f *(g~'/ ))e SO,(X)
since g is (,7) -continuous and f is contra(A,n) -continuous. It follows that
(gof)™eSC,(X). Hence go f is contra(4, ) -continuous.

(2) Let VeSO, (Y), then g™(V)eSC,(Z) and f(g™(V))eSC,(X) since g s
contra (n,7)” -continuous and f is (1,7) -continuous. It follows that (gof )™
eSC,(X).Hence go f is contra(4,y) -continuous.

(3) Let VeSO, (Y), then g™(V)eSO,(Z) and g™(V)eSC, (Z) since g is (1,7) -
continuous and (Z,p) is locally 7" -indiscrete, then f *(g™(V))e SO,(X) since f
is(4,n7)"-continuous. Hence go f is contra(A4, ) -continuous.
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