http://garmian.edu.krd

https://doi.org/10.24271/garmian.126

 $\lambda_{\beta c}$ -Connected Spaces and $\lambda_{\beta c}$ -Components

Alias B. Khalaf¹ & Sarhad F. Namiq²

 College of Science, University of Duhok, Duhok, Kurdistan- Region, Iraq. Email: <u>aliasbkhalaf@gmail.com</u>.
 Mathematics Department, College of Education, University of Garmian, Kurdistan- Region, Iraq. Email: <u>sarhad.faig@garmian.edu.krd</u> or <u>sarhad1983@gmail.com</u>.

Abstract

In this paper, we define and study a new type of connected spaces called $\lambda_{\beta c}$ connected space. It is remarkable that the class of λ -connected spaces is a subclass
of the class of $\lambda_{\beta c}$ -connected spaces. We discuss some characterizations and
properties of $\lambda_{\beta c}$ -connected spaces , $\lambda_{\beta c}$ -components and $\lambda_{\beta c}$ -locally connected
spaces.

1. Introduction

The study of semi-open sets and their properties was initiated by N. Levine [1] in 1963. In [2], S.F.Namiq defined an operation λ on the family of semi open sets in a topological space called s-operation via this operation, he defined λ -open sets. By using λ -open and semi closed set also S.F.Namiq in [3], defined $\lambda_{\beta c}$ -open set and also investigated several properties of $\lambda_{\beta c}$ -derived, $\lambda_{\beta c}$ -interior and $\lambda_{\beta c}$ -closure points in topological spaces, moreover In [4], S.F.Namiq defined λ -connected spaces by using λ -open sets. In [5], Furthermore S.F. Namiq defined λ_c connected spaces via λ_c -open sets. S. Willard in [6], obtained some analogous properties of connectedness for $\lambda_{\beta c}$ -connectedness. Throughout the present paper, a topological space is denoted by (X, τ) or simply by X.

2. Preliminaries

First, we recall some definitions and results used in this paper. For any subset A of X, the closure and the interior of A are denoted by Cl(A) and Int(A), A subset A of a space X is said to be semi open [1] if respectively. $A \subseteq Cl$ (Int (A)). The complement of a semi open set is said to be semi closed [1]. The family of all semi open (resp. semi closed) sets in a space X is denoted by $SO(X,\tau)$ or SO(X) (resp. $SC(X,\tau)$ or SC(X)). A space X is said to be sconnected [7], if it is not the union of two nonempty disjoint semi open subsets of X. A subset A of a topological space X is said to be β -open [8], if $A \subseteq Cl(Int(Cl(A)))$). The complement of a β -open set is said to be β -closed. The family of all β -open (resp. β -closed) sets in a topological space (X, τ) is by $\beta O(X,\tau)$ or $\beta O(X)$ (resp. $\beta C(X,\tau)$ or $\beta C(X)$). We denoted consider λ : $SO(X) \rightarrow P(X)$ as a function defined on SO(X) into the power set of X, P(X) and λ is called an s-operation if $V \subseteq \lambda(V)$, for each semi open set V. It is assumed that $\lambda(\phi) = \phi$ and $\lambda(X) = X$, for any s-operation λ . Let X be a space and $\lambda: SO(X) \to P(X)$ be an s-operation, then a subset A of X is called a λ -open set [2], which is equivalent to λ_s -open set [9], if for each $x \in A$, there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ -open set is said to be λ -closed. The family of all λ -open (resp., λ -closed) subsets of a space X is denoted by $SO_{\lambda}(X,\tau)$ or $SO_{\lambda}(X)$ (resp. $SC_{\lambda}(X,\tau)$ or $SC_{\lambda}(X)$), then a λ -open subset A of X is called a λ_c -open set [2], if for each $x \in A$, there exists a closed set F such that $x \in F \subseteq A$. The family of all λ_c -open (resp., λ_c closed) subsets of a space X is denoted by $SO_{\lambda c}(X,\tau)$ or $SO_{\lambda c}(X)$ (resp. $SC_{\lambda_c}(X,\tau)$ or $SC_{\lambda_c}(X)$).

Now, we recall some definitions and restate some known results which will be used in the sequel.

Definition 2.1[2]. Let X be a space and $\lambda : SO(X) \to P(X)$ be an s-operation, then a subset A of X is called a λ -open set if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$.

The complement of a λ -open set is called λ -closed. The family of all λ -open (resp., λ -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda}(X, \tau)$ or $SO_{\lambda}(X)$ (resp., $SC_{\lambda}(X, \tau)$ or $SC_{\lambda}(X)$).

Definition 2.2[2]. A λ -open subset A of X is called a λ_c -open set if for each $x \in A$ there exists a closed set F such that $x \in F \subseteq A$. The family of all λ_c -open (resp., λ_c -closed) subsets of a space X is denoted by $SO_{\lambda c}(X, \tau)$ or $SO_{\lambda c}(X)$ (resp., $SC_{\lambda c}(X, \tau)$ or $SC_{\lambda c}(X)$).

Definition 2.3 [3]. A λ -open subset A of X is called a $\lambda_{\beta c}$ -open set if for each $x \in A$, there exists a β -closed set F such that $x \in F \subseteq A$. The family of all $\lambda_{\beta c}$ -open (resp., $\lambda_{\beta c}$ -closed) subsets of a space X is denoted by $SO_{\lambda_{\beta c}}(X,\tau)$ or $SO_{\lambda_{\beta c}}(X)$ (resp., $SC_{\lambda_{\beta c}}(X,\tau)$ or $SC_{\lambda_{\beta c}}(X)$).

Proposition 2.4 [3]. For a space X, $SO_{\lambda c}(X) \subseteq SO_{\lambda \beta c}(X) \subseteq SO_{\lambda}(X) \subseteq SO(X)$.

The following examples show that the converse of the above proposition may not be true in general.

Example 2.5. Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, X\}$. Define an s-operation $\lambda : SO(X) \rightarrow P(X)$ as follows:

$$\lambda(A) = \begin{cases} A & \text{if } b \in A \\ X & \text{otherwise} \end{cases}$$

Here, we have $\{a, c\}$ is a semi open set, but it is not λ -open. And also we have $\{a, b\}$ is a λ -open set but it is a $\lambda_{\beta c}$ -open set, but not λ_c -open.

Example 2.6. Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. We define an s-operation $\lambda : SO(X) \rightarrow P(X)$ as:

 $\lambda(A) = \begin{cases} A & \text{if } A = \{b\} \\ X & \text{otherwise} \end{cases}$

Here, we have $\{b\}$ is a $\lambda_{\beta c}$ -open set, but it is not λ_{c} -open.

Definition 2.17 [9]. Let X be a space, an s-operation λ is said to be s-regular if for every semi open sets U and V containing $x \in X$, there exists a semi open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$.

Definition 2.8.[3]. Let X be a space and A a subset of X. Then:

- (1) The $\lambda_{\beta c}$ -closure of A ($\lambda_{\beta c}Cl(A)$) is the intersection of all $\lambda_{\beta c}$ -closed sets which containing A.
- (2) The $\lambda_{\beta c}$ -interior of A ($\lambda_{\beta c}Int(A)$) is the union of all $\lambda_{\beta c}$ -open sets of X which contained in A.
- (3) A point $x \in X$ is said to be a $\lambda_{\beta c}$ -limit point of A if every $\lambda_{\beta c}$ -open set containing x contains a point of A different from x, and the set of all $\lambda_{\beta c}$ -limit points of A is called the $\lambda_{\beta c}$ -derived set of A, denoted by $\lambda_{\beta c} D(A)$.

Proposition 2.9.[3]. For each point $x \in X$, $x \in \lambda_{\beta c} Cl(A)$ if and only if $V \cap A \neq \phi$, for every $V \in SO_{\lambda_{\beta c}}(X)$ such that $x \in V$.

Proposition 2.10.[3]. Let $\{A_{\alpha}\}_{\alpha \in I}$ be any collection of $\lambda_{\beta c}$ -open sets in a topological space (X, τ) , then $\bigcup_{\alpha \in I}^{A_{\alpha}}$ is a $\lambda_{\beta c}$ -open set. **Example 2.11** Let $X = \{\alpha, h, c\}$ and $\tau = P(X)$. We define an c operation.

Example 2.11. Let $X = \{a, b, c\}$ and $\tau = P(X)$. We define an s-operation $\lambda: SO(X) \rightarrow P(X)$ as:

$$\lambda(A) = \begin{cases} A & \text{if } A \neq \{a\}, \{b\} \\ X & \text{otherwise} \end{cases}.$$

Now, we have $\{a, b\}$ and $\{b, c\}$ are $\lambda_{\beta c}$ -open sets, but $\{a, b\} \cap \{b, c\} = \{b\}$ is not $\lambda_{\beta c}$ -open.

Proposition 2.12.[3]. Let λ be an s-operation and s-regular. If A and B are $\lambda_{\beta c}$ -

open sets in X , then $A \cap B$ is also a $\lambda_{\beta c}$ -open set.

Proposition 2.13.[3]. Let X be a space and $A \subseteq X$. Then A is a $\lambda_{\beta c}$ -closed subset of X if and only if $\lambda_{\beta c} D(A) \subseteq A$.

Proposition 2.14.[3]. For subsets A, B of a space X, the following statements are true.

(1)
$$A \subseteq \lambda_{\beta c} Cl(A)$$
.

- (2) $\lambda_{\beta c} Cl(A)$ is a $\lambda_{\beta c}$ -closed set in X.
- (3) $\lambda_{\beta c} Cl(A)$ is a smallest $\lambda_{\beta c}$ -closed set, which contain A.
- (4) A is a $\lambda_{\beta c}$ -closed set if and only if $A = \lambda_{\beta c} Cl(A)$.
- (5) $\lambda_{\beta c} Cl(\phi) = \phi$ and $\lambda_{\beta c} Cl(X) = X$.
- (6) If A and B are subsets of the space X with $A \subseteq B$. Then $\lambda_{\beta c} Cl(A) \subseteq \lambda_{\beta c} Cl(B)$.
- (7) For any subsets A, B of a space X. $\lambda_{\beta c}Cl(A) \cup \lambda_{\beta c}Cl(B) \subseteq \lambda_{\beta c}Cl(A \cup B)$.
- (8) For any subsets A, B of a space X. $\lambda_{\beta c}Cl(A \cap B) \subseteq \lambda_{\beta c}Cl(A) \cap \lambda_{\beta c}Cl(B)$.

Proposition 2.15[3]. Let X be a space and $A \subseteq X$. Then $\lambda_{\beta c} Cl(A) = A \cup$

 $\lambda_{\beta c} D(A).$

Definition 2.16.[4]. A space X is said to be λ -connected if there does not exist a pair A, B of nonempty disjoint λ -open subset of X such that $X = A \cup B$, otherwise X is called λ -disconnected. In this case, the pair (A, B) is called a λ -disconnection of X.

Definition 2.17.[5]. A space *X* is said to be λ_c -connected if there does not exist a pair *A*, *B* of nonempty disjoint λ_c -open subset of *X* such that $X = A \cup B$, otherwise *X* is called λ_c -disconnected. In this case, the pair (*A*, *B*) is called a λ_c -disconnection of *X*.

Theorem 2.17.[4]. Every s-connected space is λ -connected.

The converse of Theorem 2.17 is not true ingeneral by the following example:

Example 2.18.[4]. Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. We define an s-operation $\lambda : SO(X) \to P(X)$ as:

 $\lambda(A) = \begin{cases} X & \text{if } a \in A \\ A & \text{otherwise} \end{cases}$ $SO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}.$ $SO_{\lambda}(X) = \{\phi, \{b\}, X\}.$

We have *X* is λ -connected, but it is not s-connected.

Theorem 2.19.[5]. Every λ -connected space is λ_c -connected.

Remark 2.20. We can show that, the converse of Theorem 2.19 is not true in general. In fact the space X of Example 2.6 is λ_c -connected, but not λ -connected.

Corollary 2.21.[5]. Every *s* -connected space is λ_c -connected.

3. $\lambda_{\beta c}$ -Connected Spaces

In this section, we define and study some characterizations and properties of a new space called λ_{sc} -connected space.

We start this section with the following definitions.

Definition 3.1. Let X be a space and $Y \subseteq X$. Then the class of $\lambda_{\beta c}$ -open sets in Y

 $(SO_{\lambda_{a_{\alpha}}}(Y))$ is defined in a natural way as:

 $SO_{\lambda_{\beta_c}}(Y) = \{Y \cap V : V \in SO_{\lambda_{\beta_c}}(X)\}.$

That is *W* is $\lambda_{\beta c}$ -open in *Y* if and only if $W = Y \cap V$, where *V* is a $\lambda_{\beta c}$ -open set in *X*. Thus, *Y* is a subspace of *X* with respect to $\lambda_{\beta c}$ -open set.

Definition 3.2. A space *X* is said to be $\lambda_{\beta c}$ -connected if there does not exist a pair *A*, *B* of nonempty disjoint $\lambda_{\beta c}$ -open subset of *X* such that $X = A \cup B$, otherwise *X* is called $\lambda_{\beta c}$ -disconnected. In this case, the pair (*A*, *B*) is called a $\lambda_{\beta c}$ -disconnection of *X*.

Definition 3.3. Let X be a space and $\lambda : SO(X) \to P(X)$ an s-operation, then the family $SO_{\lambda_{\beta_c}}(X)$ is called λ_{β_c} -indiscrete space if $SO_{\lambda_{\beta_c}}(X) = \{\phi, X\}$.

Definition 3.4. Let X be a space and $\lambda : SO(X) \to P(X)$ an s-operation then the family $SO_{\lambda_{\beta_c}}(X)$ is called a λ_{β_c} -discrete space if $SO_{\lambda_{\beta_c}}(X) = P(X)$.

Example 3.5. Every $\lambda_{\beta c}$ -indiscrete space is λ_c -connected.

We give in below a characterization of $\lambda_{\beta c}$ -connected spaces, the proof of which is straight forward.

Theorem 3.6. A space *X* is $\lambda_{\beta c}$ -disconnected (respt. $\lambda_{\beta c}$ -connected) if and only if there exists (resp., does not exist) a non empty proper subset *A* of *X*, which is both $\lambda_{\beta c}$ -open and $\lambda_{\beta c}$ -closed in *X*.

Theorem 3.7. Every λ -connected space is $\lambda_{\beta c}$ -connected.

Proof. Let *X* be λ -connected, then there does not exist a pair *A*, *B* of nonempty disjoint λ -open subset of *X* such that $X = A \cup B$, but every $\lambda_{\beta c}$ -open set is a λ -open set by Proposition 2.4, so there does not exist a pair *A*, *B* of nonempty disjoint $\lambda_{\beta c}$ -open subset of *X* such that $X = A \cup B$. Thus *X* is $\lambda_{\beta c}$ -connected.

The converse of Theorem 3.7 is not true in general as it is shown by the following example:

Example 3.8. Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. We define an s-operation $\lambda : SO(X) \rightarrow P(X)$ as follows:

$$\lambda(A) = \begin{cases} A & \text{if } A = \{a\} \\ X & \text{otherwise} \end{cases}$$

$$SO(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\} = \beta O(X).$$

$$SO_{\lambda}(X) = \{\phi, \{a\}, X\}.$$

$$SO_{\lambda_{\beta_{c}}}(X) = \{\phi, X\}.$$

We have X is $\lambda_{\beta c}$ -connected, but it is not λ -connected.

Theorem 3.9. Every $\lambda_{\beta c}$ -connected space is λ_c -connected.

Proof. Let *X* be $\lambda_{\beta c}$ -connected, then there does not exist a pair *A*, *B* of nonempty disjoint $\lambda_{\beta c}$ -open subset of *X* such that $X = A \cup B$, but every λ_c -open set is a $\lambda_{\beta c}$ -open set by Proposition 2.4, so there does not exist a pair *A*, *B* of nonempty disjoint λ_c -open subset of *X* such that $X = A \cup B$. Thus *X* is λ_c -connected.

Remark 3.10. The converse of Theorem 3.9 is not true, in general. The space X of Example 2.6 is λ_c -connected, but not $\lambda_{\beta c}$ -connected.

Remark 3.11. The following diagram combining Theorem 2.17, Theorem 2.19, Theorem 3.7, Theorem 3.9, Corollary 2.21, Example 2.6, Example 2.18, Example 3.8, Remark 2.20 and Remark 3.10.

Definition 3.12. Let X be a space and $A \subseteq X$. The $\lambda_{\beta c}$ -boundary of A, written $\lambda_{\beta c}Bd(A)$, is defined as the set $\lambda_{\beta c}Bd(A) = \lambda_{\beta c}Cl(A) \cap \lambda_{\beta c}Cl(X / A)$.

Theorem 3.13. A space *X* is $\lambda_{\beta c}$ -connected if and only if every nonempty proper subspace has a nonempty $\lambda_{\beta c}$ -boundary.

Proof. Suppose that a nonempty proper subspace *A* of a $\lambda_{\beta c}$ -connected space *X* has empty $\lambda_{\beta c}$ -boundary. Then *A* is $\lambda_{\beta c}$ -open and $\lambda_{\beta c}Cl(A) \cap \lambda_{\beta c}Cl(X \setminus A) = \phi$. Let *p* be a $\lambda_{\beta c}$ -limit point of *A*. Then $p \in \lambda_{\beta c}Cl(A)$ but $p \notin \lambda_{\beta c}Cl(X \setminus A)$. In particular *p* $\notin (X \setminus A)$ and so $p \in A$. Thus *A* is $\lambda_{\beta c}$ -closed and $\lambda_{\beta c}$ -open. By Theorem 3.6, *X* is $\lambda_{\beta c}$ -disconnected. This contradiction gives that *A* has a nonempty $\lambda_{\beta c}$ -boundary.

Conversely, suppose X is $\lambda_{\beta c}$ -disconnected. Then by Theorem 3.6, X has a proper subspace A which is both $\lambda_{\beta c}$ -closed and $\lambda_{\beta c}$ -open. Then $\lambda_{\beta c}Cl(A) = A$, $\lambda_{\beta c}Cl(X \setminus A) = (X \setminus A)$ and $\lambda_{\beta c}Cl(A) \cap \lambda_{\beta c}Cl(X \setminus A) = \phi$. So A has empty $\lambda_{\beta c}$ boundary, a contradiction. Hence X is $\lambda_{\beta c}$ -connected. This completes the proof.

Theorem 3.14. Let (A, B) be a $\lambda_{\beta c}$ -disconnection of a space X and C be a $\lambda_{\beta c}$ connected subspace of X. Then C is contained in A or in B.

Proof. Suppose that *C* is neither contained in *A* nor in *B*. Then $C \cap A$, $C \cap B$ are both nonempty $\lambda_{\beta c}$ -open subsets of *C* such that $(C \cap A) \cap (C \cap B) = \phi$ and $(C \cap A) \cup (C \cap B) = C$. This gives that $(C \cap A, C \cap B)$ is a $\lambda_{\beta c}$ -disconnection of *C*. This contradiction proves the theorem.

Theorem 3.15. Let $X = \bigcup_{\alpha \in I} X_{\alpha}$, where each X_{α} is $\lambda_{\beta c}$ -connected and $\bigcap_{\alpha \in I} X_{\alpha} \neq \phi$. Then *X* is $\lambda_{\beta c}$ -connected.

Proof. Suppose on the contrary that (A, B) is a $\lambda_{\beta c}$ -disconnection of X. Since each X_{α} is $\lambda_{\beta c}$ -connected, therefore by Theorem 3.14, $X_{\alpha} \subseteq A$ or $X_{\alpha} \subseteq B$. Since

 $\bigcap_{\alpha \in I} X_{\alpha} \neq \phi$, therefore all X_{α} are contained in *A* or in *B*. This gives that, if $X \subseteq A$, then $B = \phi$ or if $X \subseteq B$, then $A = \phi$. This contradiction proves that *X* is $\lambda_{\beta c}$ connected. Which completes the proof.

Using Theorem 3.15, we give a characterization of $\lambda_{\beta c}$ -connectedness as follows:

Theorem 3.16. A space *X* is $\lambda_{\beta c}$ -connected if and only if for every pair of points *x*, *y* in *X*, there is a $\lambda_{\beta c}$ -connected subset of *X*, which contains both *x* and *y*.

Proof. The necessity is immediate since the $\lambda_{\beta c}$ -connected space itself contains these two points.

For the sufficiency, suppose that for any two points x, y; there is a $\lambda_{\beta c}$ -connected subspace $C_{x,y}$ of X such that $x, y \in C_{x,y}$. Let $a \in X$ be a fixed point and $\{C_{a,x}, x \in X\}$ a class of all $\lambda_{\beta c}$ -connected subsets of X, which contain a and $x \in X$. Then $X = \bigcup_{x \in X} C_{a,x}$ and $\bigcap_{x \in X} C_{a,x} \neq \phi$. Therefore, by Theorem 3.15, X is $\lambda_{\beta c}$ connected. This completes the proof.

Theorem 3.17. Let *C* be a $\lambda_{\beta c}$ -connected subset of a space *X* and $A \subseteq X$ such that $C \subseteq A \subseteq \lambda_{\beta c} Cl(C)$. Then *A* is $\lambda_{\beta c}$ -connected.

Proof. It is sufficient to show that $\lambda_{\beta c}Cl(C)$ is $\lambda_{\beta c}$ -connected. On the contrary, suppose that $\lambda_{\beta c}Cl(C)$ is $\lambda_{\beta c}$ -disconnected. Then there exists a $\lambda_{\beta c}$ -disconnection (*H*, *K*) of $\lambda_{\beta c}Cl(C)$. That is, $H \cap C$, $K \cap C$ are $\lambda_{\beta c}$ -open sets in *C* such that $(H \cap C) \cap (K \cap C) = (H \cap K) \cap C = \phi$ and $(H \cap C) \cap (K \cap C) = (H \cap K) \cap C = C$. This gives that $(H \cap C, K \cap C)$ is a $\lambda_{\beta c}$ -disconnection of *C*, a contradiction. This proves that $\lambda_{\beta c}Cl(C)$ is $\lambda_{\beta c}$ -connected.

4. $\lambda_{\beta c}$ -component of a set

We introduce the following definition

Definition 4.1. A maximal $\lambda_{\beta c}$ -connected subset of a space *X* is called a $\lambda_{\beta c}$ - component of *X*. If *X* itself is $\lambda_{\beta c}$ -connected, then *X* is the only $\lambda_{\beta c}$ -component of *X*.

Next we study the properties of $\lambda_{\beta c}$ -components of a space X :

Theorem 4.2. Let (X, τ) be a topological space. Then

(1) For each $x \in X$, there is exactly one $\lambda_{\beta c}$ -component of X containing x.

- (2) Each $\lambda_{\beta c}$ -connected subset of *X* is contained in exactly one $\lambda_{\beta c}$ -component of *X*.
- (3) A $\lambda_{\beta c}$ -connected subset of X, which is both $\lambda_{\beta c}$ -open and $\lambda_{\beta c}$ -closed is a $\lambda_{\beta c}$ component, if λ is s-regular.
- (4) Every $\lambda_{\beta c}$ -component of *X* is $\lambda_{\beta c}$ -closed in *X*.

Proof:

- (1) Let $x \in X$ and $\{C_{\alpha} : \alpha \in I\}$ be a class of all $\lambda_{\beta c}$ -connected subsets of X containing x. Put $C = \bigcup_{\alpha \in I} C_{\alpha}$, then by Theorem 3.15, C is $\lambda_{\beta c}$ -connected and $x \in X$. Suppose $C \subseteq C^*$, for some $\lambda_{\beta c}$ -connected subset C^* of X. Then $x \in C^*$ and hence C^* is one of the C_{α} 's and hence $C^* \subseteq C$. Consequently $C = C^*$. This proves that C is a $\lambda_{\beta c}$ -component of X, which contains x.
- (2) Let A be a $\lambda_{\beta c}$ -connected subset of X, which is not a $\lambda_{\beta c}$ -component of X. Suppose that C_1 , C_2 are $\lambda_{\beta c}$ -components of X such that $A \subseteq C_1$, $A \subseteq C_2$. Since $C_1 \cap C_2 = \phi$, $C_1 \cup C_2$ is another $\lambda_{\beta c}$ -connected set which contains C_1 as well as C_2 , this contradicts the fact that C_1 and C_2 are $\lambda_{\beta c}$ -components. This proves that A is contained in exactly one $\lambda_{\beta c}$ -component of X.

- (3) Suppose that A is a λ_{βc}-connected subset of X which is both λ_{βc}-open and λ_{βc}-closed. By (2), A is contained in exactly one λ_{βc}-component C of X. If A is a proper subset of C, and since λ is s-regular, therefore C = (C ∩ A) ∪ (C ∩ (X \ A)) is a λ_{βc}-disconnection of C, a contradiction. Thus, A = C.
- (4) Suppose a $\lambda_{\beta c}$ -component *C* of *X* is not $\lambda_{\beta c}$ -closed. Then, by Theorem 3.17, $\lambda_{\beta c}Cl(A)$ is $\lambda_{\beta c}$ -connected containing a $\lambda_{\beta c}$ -component *C* of *X*. This implies *C* $=\lambda_{\beta c}Cl(A)$ and hence *C* is $\lambda_{\beta c}$ -closed. This completes the proof.

We introduce the following definition

Definition 4.3. A space *X* is said to be locally $\lambda_{\beta c}$ -connected if for any point $x \in X$ and any $\lambda_{\beta c}$ -open set *U* containing *x*, there is a $\lambda_{\beta c}$ -connected $\lambda_{\beta c}$ -open set *V* such that $x \in V \subseteq U$.

Theorem 4.4. A $\lambda_{\beta c}$ -open subset of $\lambda_{\beta c}$ -locally connected space is $\lambda_{\beta c}$ -locally connected.

Proof. Let *U* be a $\lambda_{\beta c}$ -open subset of a $\lambda_{\beta c}$ -locally connected space *X*. Let $x \in U$ and *V* a $\lambda_{\beta c}$ -open nbd of *x* in *U*. Then *V* is a $\lambda_{\beta c}$ -open nbd of *x* in *X*. Since *X* is $\lambda_{\beta c}$ -locally connected, therefore there exists a $\lambda_{\beta c}$ -connected, $\lambda_{\beta c}$ -open nbd *W* of *x* such that $x \in W \subseteq V$. So that *W* is also a $\lambda_{\beta c}$ -connected $\lambda_{\beta c}$ -open nbd *x* in *U* such that $x \in W \subseteq U \subseteq V$ or $x \in W \subseteq V$. This proves that *U* is $\lambda_{\beta c}$ -locally connected.

References

- 1. Levine, N., *Semi-open sets and semi-continuity in topological spaces*. The American Mathematical Monthly, 1963. **70**(1): p. 36-41.
- 2. F.Namiq, S., *New types of continuity and separation axiom based operation in topological spaces*. 2011, Sulaimani.
- 3. F.Namiq, S., λ_β*c-Open Sets and Topological Properties*. Journal of Garmian University, 2017. **Preprint**.
- 4. Namiq, S.F., *λ*-*Connected Spaces Via λ*-*Open Sets*. Journal of Garmyan University, 2015. **1**: p. 165-178.
- 5. Alias B. Khalaf , H.M.D.a.S.F.N., λ_c -Connected Spaces Via λ_c -Open Sets. journal of Garmian University, 2017. **1**(12): p. 15-29.
- 6. Willard, S., *General topology*. 1970: Courier Corporation.
- 7. Dorsett, C., *Semi-connectedness*. Indian J. Mech. Math, 1979. **17**(1): p. 57-63.
- 8. El-Monsef, M.A., S. El-Deeb, and R. Mahmoud, β -open sets and β continuous mappings. Bull. Fac. Sci. Assiut Univ, 1983. **12**(1): p. 77-90.
- 9. Khalaf, A.B. and S.F. Namiq, *[[lambda]. sub. c]-open sets and [[lambda]. sub. c]-separation axioms in topological spaces.* Journal of Advanced Studies in Topology, 2013. **4**(1): p. 150-159.