Localization and Some Properties of Certain Types of Modules

Adil Kadir Jabbar ${ }^{1}$ and Rasti Raheem Mohammad Amin ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Science, University of Sulaimani, Sulaimani, Iraq
${ }^{2}$ Department of Mathematics, College of Education, University of Garmian, Garmian, Iraq adilkj@gmail.com or adil.jabbar@univsul.edu.iq and ${ }^{2}$ rasti.raheem90@gmail.com

Abstract

In this paper Artinian and locally prime modules are studied and some characterizations of locally prime modules are given. Some conditions are given under which locally prime modules are almost prime modules and a nonzero module is a locally prime module. Some properties of Artinian and locally Artinian modules are given. Also, strongly reduced modules, primally reduced modules, radically reduced modules and some other types are studied and investigated and some properties of these types of modules are proved. In addition, some relations that concerning these types of modules are established and some characterizations of them are given.

Keywords: Artinian and locally Artinian modules, locally prime modules, strongly reduced modules, primally reduced modules and radically reduced modules.

1. Introduction

Let M be an R-module. A nonempty subset S of R is called a multiplicative system in R, if $0 \notin S$ and $a, b \in S$ implies that $a b \in S$ [10]. Let M be an R - module and N is a submodule of M, the annihilator of N is defined as $\operatorname{Ann}(N)=\{r \in M: r N=0\} ; \quad[11]$. As especial case, we have, $\operatorname{Ann}(M)=\{r \in R: r M=0\}$. Let N be a submodule of an $R-\operatorname{module} M$, then we define $(N: M)$ as $(N: M)=\{r \in R: r M \subseteq N\} \quad[12]$. In particular, $(0: M)=\{r \in R: r M=0\}=\operatorname{Ann}(M)$. Let N be a proper submodule of an R-module M, then N is called a prime submodule of M, if $r \in R$ and $x \in M$ such that $r x \in N$, then $x \in N$ or $r M \subseteq N$ [4]. Let N be a proper submodule of an $R-$ module M, then N is called a semiprime submodule of M, if $r \in R$ and $x \in M$ such that $r^{2} x \in N$, then $r x \in N$ and M is called a semiprime module if the zero submodule of M is a semiprime submodule [4]. An R-module M is called a prime module if the zero submodule of M is a prime submodule of M [2]. An R-module M is called an almost prime module if each nonzero proper direct summand of M is a prime submodule of M [4]. An R-module M is called a fully prime module if every proper submodule of M is prime and it is called an almost fully prime module, if every non zero proper submodule of M is prime [4]. An R-module M is called a fully semiprime module if each proper submodule of M is semiprime and
it is called almost fully semiprime if each nonzero proper submodule of M is semiprime [4]. An R-module M is called a locally prime module if M_{P} is a prime module for each maximal ideal P of R [8]. An $R-$ module M is called an Artinian module if it satisfies the descending chain condition on submodules, equivalently, if there exists a positive integer k such that $N_{k}=N_{k+n}$, for all $n \in Z^{+}$and it is called a locally Artinian module if M_{P} is an Artinian R_{P}-module for each maximal ideal P of R [8]. The prime spectrum of an $R-$ module M is denoted by $\operatorname{Spec}(M)$ and defined as $\operatorname{Spec}(M)=\{N: N$ is a prime submodule of $M\}$ [3]. If N is a submodule of M, then $S_{M}(N)=\{r \in R: r m \in N$, for some $m \notin N\}$ [1]. A proper submodule N of M is called a primal submodule if $S_{M}(N)$ forms an ideal of R, this ideal is a proper ideal of R [1]. A proper submodule N of an $R-$ module M is said to be a weakly prime submodule, if whenever $0 \neq r m \in N$, for $r \in R, m \in M$, then $m \in N$ or $r M \subseteq N$ [2]. An R - module M is called a faithful module if Ann $(M)=0((0: M)=0)$ [8]. An $R-\operatorname{module} M$ is called a cyclic $R-$ module if $M=R x$, for some $x \in M$ [8]. Let M be an R-module. The primal spectrum of M is denoted by $\operatorname{pepec}(M)$, and is defind as $p \operatorname{Spec}(M)=\{N: N$ is a primal submodule of $M\}$ and we say that M is a primally reduced R - module if $\cap p \operatorname{Spec}(M)=0$ [5]. An R-module M is called a reduced module if $\cap \operatorname{Spec}(M)=0$ and it is called locally reduced if M_{P} is reduced [6]. Let M be an $\quad R$ - module. The Jacobson spectrum of M, denoted by $\operatorname{jpSpec}(M)=\left\{N \in \operatorname{Spec}(M): S_{M}(N) \subseteq \operatorname{Rad}_{j}(R)\right\}$, where $\operatorname{Rad}_{j}(R)$ is the Jacobson radical of R and we say that M is radically reduced if $\cap j p \operatorname{Spec}(M)=0$ [5]. Let M be an R - module and P a maximal ideal of R, we define $\operatorname{Spec}_{p}(M)=\left\{N: N \in \operatorname{Spec}(M)\right.$ and $\left.S_{M}(N) \subseteq P\right\}$ and we say that M is a strongly reduced R-module if $\cap \operatorname{Spec}_{p}(M)=0[8]$. A proper submodule N of M is called a maximal submodule if it is not properly contained in any proper submodule of M and the Jacobson radical of R, denoted by $\operatorname{Rad}_{j}(R)$ (or $J(R)$), is defined to be the intersection of all the maximal ideal of R [5]. Let M be an R-module. A submodule A of M is called an essential submodule of M (or M is an essential extension of A), written $A \leq_{e} M$, if B is any nonzero submodule of M, then $A \cap B \neq\{0\}$, that means every non zero submodule of M must contain at least a non zero element of A. Let M be an R-module and A, B are submodules of M, then the set $\{A, B\}$ is called independent if $A \cap B=\{0\}$. Let M be an R-module and A a submodule of M. A submodule B of M is said to be relative complement for A if $A \cap B=\{0\}$ and B is maximal with respect to the property $A \cap B=\{0\}$ (that is, B is not contained properly in any other submodule \dot{B} with the property $\cap \hat{B}=\{0\}$). Let M be an R-module. A(proper) submodule A of M is called a closed submodule of M, written $A \leq_{c} M$, if A has no proper essential extension in M and if the submodule A is not closed in M, then we write $A \not \oiint_{c} M$. A submodule A of an
R-module M is called small (or superfluous), in symbols $A \ll M$, if B is any submodule of M such that $A+B=M$, then $B=M$ (equivalently, if M is the only submodule of M such that $A+M=M$). Let M be an R-module. M is called a multiplication module if for each submodule N of M, there exists an ideal I of R such that $N=I M$ [8]. Let M be an R-module. M is called a weak multiplication module if for every prime submodule N of M we have $N=(N: M) M$ [8]. Let R be a commutative ring with identity. Then R it is called a local ring if it has a unique maximal ideal.

2. Artinian and Locally Prime Modules

This section is devoted to study Artinian and locally prime modules. Some characterizations of locally prime modules are given and some conditions are given under which locally prime modules are almost prime modules and also we give a condition which makes a nonzero module as a locally prime module and some properties of Artinian and locally Artinian modules are given.

In the first result we give some characterizations of locally prime modules. Theorem 2.1. Let M be an R-module. If P is a maximal ideal of R such that $S_{M}(0) \subseteq P$, then the following conditions are equivalent:
(1) M is a locally prime module.
(2) Each proper direct summand of M is a prime submodule (that is, each nonzero summand becomes a prime module by itself).
(3) All nonzero cyclic submodules of M are isomorphic.
(4) For all $0 \neq m \in M$, we have $\operatorname{Ann}(m)=\operatorname{Ann}(M)$.

Proof. Since, M is locally prime, so that M_{P} is a prime module and as $S_{M}(0) \subseteq P$, the results will follow directly by [9, Theorem 2.10].

The following theorem proves that under certain conditions locally prime modules become almost prime modules.
Theorem 2.2. If M is a locally prime module with $S_{M}(0) \subseteq P$ and P is a maximal ideal of R, then M is an almost prime R-module.
Proof. Since, M is a locally prime module that means M_{P} is a prime module, then by [9, Theorem 2.12], we get M is an almost prime R-module.

In the following result we give some conditions under which a nonzero module is locally prime.
Theorem 2.3. If M is a nonzero R-module such that $S_{M}(0) \subseteq J(R)$ and $S_{M}(0) \subseteq(0: M)$, then M is a locally prime module.
Proof. Let P be any maximal ideal of R, then $S_{M}(0) \subseteq J(R) \subseteq P$, so by [7, Theorem 2.12], we get $\{0\}$ is a prime submodule of M and by [7, Proposition 2.17], we have $\{0\}_{P}$ is a proper submodule of M_{P}. To show $\{0\}_{P}$ is a prime submodule of M_{P}. Let $\quad \frac{r}{p} \frac{a}{q} \in\{0\}_{P}$, where $r \in R, a \in M, p, q \notin P$ and let $\frac{a}{q} \notin\{0\}_{P}$, then $a \neq 0$,
that is $a \notin\{0\}$. Now, $\frac{r a}{p q} \in\{0\}_{P}$ implies that $\operatorname{tr} a=0 \in\{0\}$, for some $t \notin P$. Since, $\{0\}$ is a prime submodule of M, then we get $\operatorname{tr} M=\{0\}$, then we get $\left(\operatorname{tr} M_{P}=\{0\}_{P}\right.$, and as $(\operatorname{tr} M)_{P}=\frac{\operatorname{tr}}{t p} M_{P}$, we get $\frac{\operatorname{tr}}{t p} M_{P}=\{0\}_{P}$, then we get ${ }_{p}^{r} M_{P}=\frac{t}{t} \frac{r}{p} M_{P}=\frac{t r}{t p} M_{P}=\{0\}_{P}$. Hence, $\{0\}_{P}$ is a prime submodule of M_{P}, so that M_{P} is a prime module that means M is a locally prime module.

The following result shows that under certain conditions the localization of a prime submodule is prime.
Theorem 2.4. Let M be a locally Artinian R - module. If P is a maximal ideal of R and N is a primal submodule of M with $S_{M}(N) \subseteq P$ and ($N: M$) is a maximal ideal of R, then N_{P} is a prime submodule of M.
Proof. As N is primal and ($N: M$) is a maximal ideal of R, by [8, Proposition 2.24], we get N is a prime submodule of M and as $S_{M}(N) \subseteq P$, so by [8, Proposition 2.21], we get N_{P} is a prime submodule of M.

Theorem 2.5. Let M be an R - module, N a proper submodule of M with $S_{M}(N) \subseteq P$ and P a maximal ideal of R. If N_{P} is a prime submodule of M_{P}, then ($N: M$) is a maximal ideal of R.
Proof. Since, N_{P} is a prime submodule of M_{P} and $S_{M}(N) \subseteq P$, so by [8, Proposition 2.21], we get N is a prime submodule of M and then by [8, Proposition 2.23], we get $(N: M)$ is a maximal ideal of R.

Theorem 2.6. Let M be an $\operatorname{Artinian} R$-module and P a maximal ideal of R. If N is a proper submodule of M such that $S_{M}(N) \subseteq P$, then N_{P} is a prime submodule of M_{P} if and only if ($N: M$) is a maximal ideal of R.
Proof. (\Rightarrow) Let N_{P} be a prime submodule of M_{P}. Since we have, $S_{M}(N) \subseteq P$, so by [8, Proposition 2.21], we get N is a prime submodule and then by [3, Corollary 2.4], we get ($N: M$) is a maximal ideal of R.
\Leftrightarrow Let $(N: M)$ be a maximal ideal of R, then by [3, Corollary 2.4$]$, we get N is a prime submodule and as $S_{M}(N) \subseteq P$, by [8, Proposition 2.21], we get N_{P} is a prime submodule of M_{p}.

In the following result we give some conditions which make the localization of a locally Artinian module as a prime module.
Theorem 2.7. Let M be a locally $\operatorname{Artinian} R$-module and P a maximal ideal of R such that $S_{M}(0) \subseteq J(R)$. If $\operatorname{Ann}(M)$ is a primal ideal of R, then M_{P} is a prime R_{P}-module if and only if $R /(\operatorname{Ann}(M))$ is a field.
Proof. (\Rightarrow) Let M_{P} be a prime module. Now, we have $S_{M}(0) \subseteq J(R) \subseteq P$, thus by [8, Proposition 2.14], we get M is a prime module and by [8, Proposition 2.17], we have $R /(\operatorname{Ann}(M))$ is a field.
(\Leftrightarrow) As $S_{M}(0) \subseteq J(R)$, we have $\operatorname{Ann}(M)$ is a primal ideal of R and $R /(\operatorname{Ann}(M))$ is a field and by [8, Proposition 2.17], we get M is a prime module, then by [9, Theorem 2.11], we get M_{P} is a prime R_{P}-module.

The next result proves that under certain condition the localization of a locally prime module is a prime module.
Theorem 2.8. Let M be an R - module. If M is locally prime and $S_{M}(0) \subseteq J(R)$, then M_{P} is a prime module.
Proof. By [8, Corollary 2.15], we get M is a prime module and by [9, Theorem 2.11], we have M_{P} is prime.

In the following result we give some conditions under which we can characterize those faithful locally Artinian modules the localization of which are prime.
Theorem 2.9. Let M be a faithful localy Artinian R - module and P be a maximal ideal of R. If R is a primal ring and $S_{M}(0) \subseteq J(R)$, then M_{P} is a prime module if and only if R is a field.
Proof (\Rightarrow) Let M_{P} be a prime and P be a maximal ideal of R, then $S_{M}(0) \subseteq J(R) \subseteq P$, thus by [8, Proposition 2.14], we get M is prime and by [8, Corollary 2.19], we have R is a field.
(\Leftrightarrow) By [8, Corollary 2.19], we get M is prime and by [9, Theorem 2.11], we have M_{P} is a prime.
Theorem 2.10. Let M be an R - module and N be a proper submodule of M. If P is a maximal ideal of R such that $S_{M}(N) \subseteq P$ and the DCC is satisfied on cyclic submodules of M_{P}, then N_{P} is a prime submodule of M_{P} if and only if N_{P} is a weakly prime submodule of M_{P}.
Proof. (\Rightarrow) Let N_{P} be a prime submodule of M_{P}, then by [8, Proposition 2.21], we get N is a prime submodule of M, so by [8, Corollary 2.22], we get N is a weakly prime submodule of M and by [8, Proposition 2.21], we have N_{P} is a weakly prime submodule of M_{P}.
(\Leftrightarrow) Let N_{P} be a weakly prime submodule of M_{P}, then by [8, Proposition 2.21], we get N is a weakly prime submodule of M, so by [8, Corollary 2.22], we get N is a prime submodule of M and by [8, Proposition 2.21], we have N_{P} is a prime submodule of M_{P}.

In the following two results we give some further conditions under which the localization of (faithful) Artinian modules are prime.
Theorem 2.11. Let M ba an Artinian R - module and P ba a maximal ideal of R such that $S_{M}(0) \subseteq P$, then M_{P} is a prime module if and only if $R /(\operatorname{Ann}(M))$ is a field.
Proof (\Rightarrow) Let M_{P} be a prime module and $S_{M}(0) \subseteq P$, then by [8, Proposition 2.14], we get M is a prime module and by [3, Proposition 2.1], we have $R /(\operatorname{Ann}(M))$ is a field.
(\Leftrightarrow) By [3, Proposition 2.1], we have M is a prime module and by [9, Theorem 2.11], we get M_{P} is a prime module.

Theorem 2.12. Let M be a faithful Artinian R - module and P ba a maximal ideal of R such that $S_{M}(0) \subseteq P$, then M_{P} is a prime module if and only if R is a field.
Proof. (\Rightarrow) Let M_{P} be a prime module. As, $S_{M}(0) \subseteq P$, by [8, Proposition 2.14], we get M is a prime module and by [3, Corollary 2.2], we have R is a field.
(\Leftrightarrow) Let R be a field. By [3, Corollary 2.2], we have M is a prime module and by [9, Theorem 2.11], we get M_{P} is a prime module.

3. Strongly Reduced, Primally Reduced and Radically Reduced Modules

In this section, further types of modules are studied and investigated such as, strongly reduced modules, primally reduced modules, radically reduced modules and some other types. Some properties of these types of modules are proved and some relations between them are determined and also some characterizations of them are given.

In the first result we prove that under certain condition, if the localization of a module is reduced, then the module itself is also reduced.
Theorem 3.1. Let M be an R-module and P be a maximal ideal of R such that $S_{M}(0) \subseteq P$. If M_{P} is a reduced R_{P}-module, then M is a reduced R-module.
Proof. Let $x \in \cap \operatorname{Spec}(M)$. Let $\bar{N} \in \operatorname{Spec}\left(M_{P}\right)$, so that \bar{N} is prime submodule of M_{P}. Then by [8, Lemma 2.27], we have $\bar{N}=N_{P}$ for the prime submodule $N=\left\{x \in M: \frac{x}{1} \in \bar{N}\right\}$ of M with $S_{M}(N) \subseteq P$, that means N_{P} is a prime submodule of M_{P}, then by [8, Lemma 2.27], we get N is a prime submodule of M, that means $N \in \operatorname{Spec}(M)$, so we get $x \in N$ and then $\frac{x}{1} \in N_{P}=\bar{N}$, thus we get $\frac{x}{1} \in \cap \operatorname{Spec}\left(M_{P}\right)$, but $\cap \operatorname{Spec}\left(M_{P}\right)=0$ we get $\frac{x}{1}=0$ and as $S_{M}(0) \subseteq P$, by [8, Lemma 2.1], we get $x=0$, so we have $\cap \operatorname{Spec}(M)=0$. That means M is a reduced module.

The next result shows that the localization of strongly reduced modules are also strongly reduced.
Theorem 3.2. Let M be an R-module and P be a maximal ideal of R. If M is strongly reduced, then M_{P} is strongly reduced.
Proof. Let $\frac{x}{p} \in \cap \operatorname{Spec}_{P}\left(M_{P}\right)$, where $x \in M$ and $p \notin P$. Let $N \in \cap \operatorname{Spec}_{P}(M)$, then $N \in \operatorname{Spec}(M)$ and $S_{M}(N) \subseteq P$, so by [8, Proposition 2.20], we get $S_{M_{P}}\left(N_{P}\right)=\left(S_{M}(N)\right)_{P} \subseteq P_{P}$, that means $S_{M_{P}}\left(N_{P}\right) \subseteq P_{P}$ and then by [8, Proposition 2.21], we get N_{P} is a prime submodule of M_{P}, that means $N_{P} \in \operatorname{Spec}\left(M_{P}\right)$ and $S_{M_{P}}\left(N_{P}\right) \subseteq P_{P}$, we get $N_{P} \in \operatorname{Spec}_{P}\left(M_{P}\right)$, so that $\frac{x}{p} \in N_{P}$ and by [8, Lemma 2.1], we have $x \in N$, thus we get $x \in \cap \operatorname{Spec}_{P}(M)$, but $\cap \operatorname{Spec}_{P}(M)=0$ we get $x=0$ and
$p \notin P$ then $\frac{x}{p}=\frac{0}{p}=0$, so we have $\cap \operatorname{Spec}_{P}\left(M_{P}\right)=0$, that means M_{P} is strongly reduced.

In the following result we give a condition under which the converse of the last theorem is true.
Theorem 3.3. Let M be an R-module and P be a prime ideal of R such that $S_{M}(0) \subseteq P$. If M_{P} is a strongly reduced R_{P}-module, then M is a strongly reduced module.
Proof. Let $x \in \cap \operatorname{Spec}_{P}(M)$ and let $\bar{N} \in \operatorname{Spec}_{P}\left(M_{P}\right)$, that is \bar{N} is prime submodule of M_{P} and $S_{M_{P}}(\bar{N}) \subseteq P_{P}$. Then by [8, Lemma 2.27], we have $\bar{N}=N_{P}$ for the prime submodule $N=\left\{x \in M: \frac{x}{1} \in \bar{N}\right\}$ of M with $S_{M}(N) \subseteq P$, that means N_{P} is a prime submodule of M_{P} and $S_{M_{P}}\left(N_{P}\right) \subseteq P_{P}$, that means $N \in \operatorname{Spec}_{P}(M)$, so we get $x \in N$ and $p \notin P$, then we have $\frac{x}{p} \in N_{P}=\bar{N}$, thus we get $\frac{x}{p} \in \cap \operatorname{Spec}_{P}(\bar{N})$ and as $\cap \operatorname{Spec}_{P}(\bar{N})=0$, we get $\frac{x}{p}=0$, then by [8, Lemma 2.1], we get $x=0$, thus we have $\cap \operatorname{Spec}_{P}(M)=0$. That means, M is strongly reduced.

Next we prove that, under a certain condition those modules localization of which are strongly reduced are reduced.
Corollary 3.4. If M_{P} is strongly reduced and P be a maximal ideal of R such that $S_{M}(0) \subseteq P$, then M is reduced.
Proof. Since, M_{P} is a strongly reduced R_{P}-module, so by Theorem 3.3, we get M is a strongly reduced R - module, that gives $\cap \operatorname{Spec}_{P}(M)=0$. Then by $[6$, Theorem 2.4], we get $\cap \operatorname{Spec}(M)=0$.
Theorem 3.5. Let M be an $R-$ module and P a maximal ideal of R, then we have $\left(\cap \operatorname{Spec}_{P}(M)\right)_{P}=\cap \operatorname{Spec}_{P}\left(M_{P}\right)$.
Proof. Let $\frac{x}{p} \in\left(\cap \operatorname{Spec}_{P}(M)\right)_{P}$, for $x \in M$ and $p \notin P$. Then $q x \in \cap \operatorname{Spec}_{P}(M)$, for some $q \notin P$. Let $\bar{N} \in \operatorname{Spec}_{P}\left(M_{P}\right)$, that is \bar{N} is prime submodule of M_{P}. Then by [8, Lemma 2.27], we have $\bar{N}=N_{P}$ for the prime submodule $N=\left\{x \in M: \frac{x}{1} \in \bar{N}\right\}$ of M with $S_{M}(N) \subseteq P$, so that $N \in \operatorname{Spec}_{P}(M)$ and thus $q x \in N$, from which we get $\frac{x}{p}=\frac{q}{q} \frac{x}{p}=\frac{q x}{q p} \in N_{P}=\bar{N} \quad$ and \quad so $\quad \frac{x}{p} \in \cap \operatorname{Spec}_{P}\left(M_{P}\right) \quad$ and thus we have $\left(\cap \operatorname{Spec}_{P}(M)\right)_{P} \subseteq \cap \operatorname{Spec}_{P}\left(M_{P}\right)$. Now, let $\frac{x}{p} \in \cap \operatorname{Spec}_{P}\left(M_{P}\right)$, where $x \in M$ and $p \notin P$. Let $N \in \operatorname{Spec}_{P}(M)$, so that $N \in \operatorname{Spec}(M)$ and $S_{M}(N) \subseteq P$, then by [8, Proposition 2.20], we get $S_{M_{P}}\left(N_{P}\right)=\left(S_{M}(N)\right)_{P} \subseteq P_{P}$, that means $S_{M_{P}}\left(N_{P}\right) \subseteq P_{P}$ and by [8, Proposition 2.21], we get N_{P} is a prime submodule of M_{P}, that is $N_{P} \in \operatorname{Spec}_{P}\left(M_{P}\right)$, so that $\frac{x}{p} \in N_{p}$ and by [8, Lemma 2.1], we have $x \in N$, thus we get $x \in \cap \operatorname{Spec}_{p}(M)$, this gives $\quad \frac{x}{p} \in\left(\cap \operatorname{Spec}_{p}(M)\right)_{P} \quad$, so that $\cap \operatorname{Spec}_{P}\left(M_{P}\right) \subseteq\left(\cap \operatorname{Spec}_{P}(M)\right)_{P}$. Hence, we get $\left(\cap \operatorname{Spec}_{P}(M)\right)_{P}=\cap \operatorname{Spec}_{P}\left(M_{P}\right)$.

The following corollary proves that, if the localization of a module is strongly reduced, then this localization is reduced.
Corollary 3.6. Let M be an R-module and P a maximal ideal of R. If M_{P} is a strongly reduced R_{P}-module, then M_{P} is a reduced R_{P}-module.
Proof. Since, M_{P} is strongly reduced so that $\cap \operatorname{Spec}_{P}\left(M_{P}\right)=0$. Then by Theorem 3.5, we get $\left(\cap \operatorname{Spec}_{P}(M)\right)_{P}=0$ and by [6, Theorem 2.4], we get $\cap \operatorname{Spec}\left(M_{P}\right)=0$, that means, M_{P} is reduced.

Next, we prove that the localization of strongly reduced modules are reduced.
Corollary 3.7. Let M be an R-module and P a maximal ideal of R. If M is a strongly reduced R-module, then M_{P} is a reduced R_{P}-module.
Proof. Since, M is strongly reduced, so by Theorem 3.2, we get M_{P} is a strongly reduced R_{P}-module that is $\cap \operatorname{Sec}_{P}\left(M_{P}\right)=0$. By Theorem 3.5, we have $\left(\cap \operatorname{Spec}_{P}(M)\right)_{P}=\cap \operatorname{Spec}_{P}\left(M_{P}\right)=0$ and then by [6, Theorem 2.4], we get $\cap \operatorname{Spec}\left(M_{P}\right)=0$.

In the following theorem, we prove that the localization of radically reduced modules are radically reduced.
Theorem 3.8. Let M be an R-module and P be a maximal ideal of R. If M is radically reduced, then M_{P} is radically reduced.
Proof. Let $\frac{x}{p} \in \cap j p \operatorname{Spec}\left(M_{P}\right)$, where $x \in M$ and $p \notin P$. Let $N \in \cap j p S p e c(M)$, then $N \in p \operatorname{Spec}(M)$ and $S_{M}(N) \subseteq \operatorname{Rad}_{j}(R) \subseteq P$. By [5, Proposition 2.5], N_{P} is a primal submodule of M_{P}, that is $N_{P} \in p \operatorname{Spec}\left(M_{P}\right)$, so that $S_{M_{P}}\left(N_{P}\right)$ is a proper ideal of R_{P} and since, R_{P} is a local ring with the unique maximal ideal P_{P}, so that $S_{M_{P}}\left(N_{P}\right) \subseteq P_{P}=\operatorname{Rad}_{j}\left(R_{P}\right)$, so that $\frac{x}{p} \in N_{P}$ and then by [8, Lemma 2.1], we have $x \in N$, thus we get $x \in \cap \operatorname{jpSpec}(M)$, but $\cap j p S p e c(M)=0$ we get $x=0$ and $p \notin P$ then $\frac{x}{p}=\frac{0}{p}=0$, we have $\cap j p \operatorname{Spec}\left(M_{P}\right)=0$ that means M_{P} is radically reduced.

Now, for the local rings we give a condition which makes the converse of the theorem is also true.
Theorem 3.9. Let R be a local ring with P as its unique maximal ideal and M be an R-module such that $S_{M}(0) \subseteq P$. If M_{P} is radically reduced, then M is radically reduced.
Proof. Let $x \in \cap j p \operatorname{Spec}(M)$ and $\bar{N} \in \operatorname{jpSpec}\left(M_{P}\right)$, that is \bar{N} is primal submodule of M_{P}. Then by [5, Proposition 2.6], we have $\bar{N}=N_{P}$ for the primal submodule $N=\left\{x \in M: \frac{x}{1} \in \bar{N}\right\}$ of M with $S_{M}(N) \subseteq P$, that means N_{P} is a primal submodule of M_{P} and $S_{M_{P}}\left(N_{P}\right) \subseteq \operatorname{Rad}_{j}\left(R_{P}\right)=P_{P}$ and by [5, Proposition 2.6], we get N is a primal submodule of M, so that $N \in p \operatorname{Spec}(M)$ and $S_{M}(N)$ is a (proper) ideal of R and thus we get $S_{M}(N) \subseteq P\left(=\operatorname{Rad}_{j}(R)\right)$, which means that $N \in j p \operatorname{Spec}(M)$, then
$x \in N$ and $p \notin P$, we have $\frac{x}{p} \in N_{P}$, thus we get $\frac{x}{p} \in \cap \operatorname{jpSpec}\left(N_{P}\right)$, but $\operatorname{OjpSpec}\left(N_{P}\right)=0$ we get $\frac{x}{p}=0$, so by [8, Lemma 2.1], we get $x=0$, then we have $\cap j p \operatorname{Spec}(M)=0$. That means M is a radically reduced R-module.

Next, we determine a relation between the primal spectrum and the Jacobson radical of a module.
Theorem 3.10. Let M be an R - module and let P be a maximal ideal of R, then $\cap p \operatorname{Spec}(M) \subseteq \cap j p S p e c(M)$.
Proof. As, $\hat{j} \operatorname{Spec}(M) \subseteq p \operatorname{Spec}(M)$, we get $\cap p \operatorname{Spec}(M) \subseteq \cap \operatorname{jpSpec}(M)$.
The following theorem shows that the localization of the Jacobson radical of a module and the Jacobson radical of the localization are the same.
Theorem 3.11. Let R be a local ring with P as its unique maximal ideal and M be an $R-$ module, then we have $(\cap j p \operatorname{Spec}(M))_{P}=\cap j p S p e c\left(M_{P}\right)$.
Proof. Let $\frac{x}{p} \in(\cap j p \operatorname{Spec}(M))_{P}$, where $x \in M$ and $p \notin P$. Then, there exists $q \notin P$ such that $q x \in \cap j p \operatorname{Spec}(M)$. Now, let $\bar{N} \in \operatorname{jpSpec}\left(M_{P}\right)$, that is \bar{N} is primal submodule of M_{P}. Then by [5, Proposition 2.6], we have $\bar{N}=N_{P}$ for the primal submodule $N=\left\{x \in M: \frac{x}{1} \in \bar{N}\right\}$ of M with $S_{M}(N) \subseteq P$, that is $N_{P} \in p \operatorname{Spec}\left(M_{P}\right)$ and $S_{M_{P}}\left(N_{P}\right) \subseteq \operatorname{Rad}_{j}\left(R_{P}\right)=P_{P}$ and by [5, Proposition 2.6], we get N is a primal submodule of M, so that $N \in \operatorname{Spec}(M)$ and $S_{M}(N)$ is a (proper) ideal of R and thus we get $S_{M}(N) \subseteq P\left(=\operatorname{Rad}_{j}(R)\right)$, which means that $N \in j p \operatorname{Spec}(M)$ and thus $q x \in N$, from which we get $\frac{x}{p}=\frac{q}{q} \frac{x}{p}=\frac{q x}{q p} \in N_{P}=\bar{N}$, so that $\frac{x}{p} \in \cap j p \operatorname{Spec}\left(M_{P}\right)$ and thus we have $(\cap j p \operatorname{Spec}(M))_{P} \subseteq \cap j p \operatorname{Spec}\left(M_{P}\right)$. Now, let $\frac{x}{p} \in \cap j p \operatorname{Spec}\left(M_{P}\right)$, where $x \in M$ and $p \notin P$. Let $N \in j p \operatorname{Spec}(M)$, then $N \in p \operatorname{Spec}(M)$ and $S_{M}(N) \subseteq \operatorname{Rad}_{j}(R) \subseteq P$. By [5, Proposition 2.5], N_{P} is a primal submodule of M_{P}, that is $N_{P} \in \operatorname{pspec}\left(M_{P}\right)$, so that $S_{M_{P}}\left(N_{P}\right)$ is a proper ideal of R_{P} and since, R_{P} is a local ring with the unique maximal ideal P_{P}, so that $S_{M_{P}}\left(N_{P}\right) \subseteq P_{P}=\operatorname{Rad}_{j}\left(R_{P}\right)$, we get $N_{P} \in j p \operatorname{Spec}\left(M_{P}\right)$, so that $\frac{x}{p} \in N_{P}$ and then by [8, Lemma 2.1], we have $x \in N$, thus we get $x \in \cap j p \operatorname{Spec}(M)$, this gives $\frac{x}{p} \in(\cap j p \operatorname{Spec}(M))_{P}$, so that $\cap j p S p e c\left(M_{P}\right) \subseteq(\cap j p S p e c(M))_{P}$. Hence, we get $(\cap j p S p e c(M))_{P}=\cap j p S p e c\left(M_{P}\right)$.

The following corollary shows that, radically reducedness property implies primally reducedness for the localized module.
Corollary 3.12. Let R be a local ring with P as its unique maximal ideal and M be an R-module. If M_{P} is radically reduced, then M_{P} is primally reduced.
Proof. Since, M_{P} is a radically reduced, so that $\cap j p \operatorname{Spec}\left(M_{P}\right)=0$. Then, by Theorem 3.11, we get $(\cap \operatorname{lpSpec}(M))_{P}=0$ and by [5, Theorem 2.11], we get
$\cap p \operatorname{Spec}\left(M_{P}\right) \subseteq(\cap \operatorname{jpSpec}(M))_{P}=0$ that means M_{P} is a primally reduced R_{P}-module.

In the following corollary, we give a condition which makes those modules the localization of which are radically reduced are primally reduced.
Corollary 3.13. Let R be a local ring with P as its unique maximal ideal and M be an R-module such that $S_{M}(0) \subseteq P$. If M_{P} is radically reduced, then M is primally reduced.
Proof. By Theorem 3.9, we have M is a radically reduced and by [5, Corollary 2.12], we get M is a primally reduced $R-$ module.

Corollary 3.14. Let M be a multiplication and a locally reduced $R-$ module and N be a submodule of M. If M_{P} is a primally reduced R - module, then $N \cap \operatorname{Ann}(N) M=0$.
Proof. By [5, Corollary 2.9], we have M is primally reduced and by [5, Proposition 2.17], we get $N \cap \operatorname{Ann}(N) M=0$.

In the following theorem, we give a condition which makes reduced modules, radically reduced modules and primally reduced modules equivalent.
Theorem 3.15. Let R be a local ring with P as its uniqe maximal ideal and M be an R-module such that $S_{M}(0) \subseteq P$. The following statements are equivalent:
(1) M_{P} is radically reduced.
(2) M is primally reduced.
(3) M is reduced.

Proof. $(1 \Rightarrow 2)$ By Corollary 3.13, we have M is a primally reduced R-module. $(2 \Rightarrow 3)$ By [5, Theorem 2.16], we get M is a reduced R-module.
$(3 \Rightarrow 1)$ By [5, Theorem 2.16], we get M is radically reduced and by Theorem 3.8, we get M_{P} is radically reduced.

By assuming some conditions in the following theorem, we give a necessary and sufficient condition for a submodule to have a weakly prime localization.
Theorem 3.16. Let M be an R-module and N a proper submodule of M with $S_{M}(0) \subseteq(N: M)$. If P is a maximal ideal of R such that $S_{M}(N) \subseteq P$, then N_{P} is weakly prime if and only if $S_{M}(N) \subseteq(N: M)$.
Proof. (\Rightarrow) Let N_{P} be weakly prime, then by [8, Proposition 2.21], we get N is weakly prime and then by [5, Proposition 2.15], we get $S_{M}(N) \subseteq(N: M)$.
(\Leftrightarrow) suppose that $S_{M}(N) \subseteq(N: M)$. By [5, Proposition 2.15], we get N is weakly prime and by [8, Proposition 2.21], we get N_{P} is weakly prime.

Next, we give some conditions which make the modules that have weak multiplication localization as weak multiplication modules.
Theorem 3.17. Let M be an R-module and N a proper submodule of M with $S_{M}(N) \subseteq J(R)$. If P is a maximal ideal of R such that M_{P} is a weak multiplication R_{P}-module, then M is a weak multiplication R-module.

Proof. Let P be any maximal ideal of R, then $S_{M}(N) \subseteq J(R) \subseteq P$. If N ia any prime submodule of M, then by [8, Proposition 2.21], we get N_{P} is a prime submodule of M_{P} and as M_{P} is a weak multiplication module, we have $N_{P}=\left(N_{P}: M_{P}\right) M_{P}$, then by [7, Theorem 2.21], we get $N_{P}=((N: M) M)_{P}$, so by [7, Corollary 2.2], we get $N=(N: M) M$, that means M is a weak multiplication R-module.

In the following theorem, we prove that the localization of prime and regular modules are fully prime.
Theorem 3.18. Let M be an R-module and P be a prime ideal of R. If M is a prime and regular module, then M_{P} is a fully prime R_{P}-module.
Proof. By [4, Corollary 1.9], we get M is a fully prime module and by [9, Theorem 2.1], we get M_{P} is a fully prime R_{P}-module.

Theorem 3.19. If each cyclic submodule of an $R-$ module M is a prime submodule and P is a prime ideal of R, then M_{P} is prime and each cyclic submodule of M is semiprime.
Proof. By [4, Corollary 1.9], we get M is prime and each cyclic submodule of M is semiprime and by [9, Theorem 2.11], we get M_{P} is prime.
Theorem 3.20. Let M be an R-module and N be a proper submodule of M. If P is a maximal ideal of R with $S_{M}(N) \subseteq P$ and $(N: M)$ is a maximal ideal of R, then ($N: M)_{P}$ is a maximal ideal of R_{P}.
Proof. Since $1 \notin P$, implies that $\frac{1}{1}$ is the identity of R_{P} and $(N: M)_{P}=R_{P}$, let $\frac{1}{1} \in(N: M)_{P}=\left(N_{P}: M_{P}\right)$, implies that $\frac{1}{1} M_{P} \subseteq N_{P}$, we get $M_{P} \subseteq N_{P}$, that means $M_{P}=N_{P}$, which is a contradiction. To show that $(N: M)_{P}$ is a maximal ideal of R_{P}, so let $(N: M)_{P} \subseteq \bar{J} \subseteq R_{P}$, for the ideal \bar{J} of R_{P}. By [7, Proposition 2.16], we have $\bar{J}=J_{P}$, for the ideal $J=\left\{a \in R: \frac{a}{1} \in \bar{J}\right\}$ of R, so that $(N: M)_{P} \subseteq J_{P} \subseteq R_{P}$. Suppose that $J_{P} \neq R_{P}$, so that $I \neq R$. If $a \in(N: M)$, then $\frac{a}{1} \in J_{P}$, so $p a \in J$, for some $p \notin P$, then $\frac{p a}{1} \in \bar{J}$. Now, $\frac{a}{1}=\frac{1}{p} \frac{p a}{1} \in \bar{J}$, so that $a \in J$ and thus $(N: M) \subseteq J \subseteq R$. As ($N: M$) is a maximal, we get $(N: M)=J$, so that $(N: M)_{P}=J_{P}$, that means $(N: M)_{P}$ is a maximal ideal of R_{P}.
Theorem 3.21. Let M be a locally Artinian R-module and N a proper submodule of M. If P is a maximal ideal of R with $S_{M}(N) \subseteq P$ and $(N: M)_{P}$ is a maximal ideal of R_{P}, then ($N: M$) is a maximal ideal of R.
Proof. As N is proper, by [7, Proposition 2.17], we get N_{P} is a proper submodule of M_{P} and then by [7, Theorem 2.21], we have $(N: M)_{P}=\left(N_{P}: M_{P}\right)$ and Since, $(N: M)_{P}$ is a maximal ideal of R_{P} and M_{P} is an Artinian module, by [3, Corollary 2.4], we have N_{P} is a prime submodule of M_{P} and by [8, Proposition 2.21], we get N is a prime submodule of M and by [8, Proposition 2.23], we get ($N: M$) is a maximal ideal of R.

References:

[1] Atani, S. E. and Darani, A. Y. : Notes on the Primal Submodules, Chiang Mai J. Sci.
35(3), 2008, pp 399-410.
[2] Atani, S. E. and Farzalipour, F. : On Weakly Prime Submodules, Tamkang Journal of Mathematics, Vol. 38, No. 3, 2007, 247-252.
[3] Azizi, A.: Prime Submodules of Artinian Modules, Taiwaness Journal of Mathematics, Vol. 13, No. 6B, pp. 2011-2020, 2009.
[4] Behboodi, M. , Karamzadeh, O.A.S. and Koohy, H. : Modules Whose Certain Submodules Are Prime, Vietnam Journal of Mathematics 32:3 (2004) pp 303-307.
[5] Jabbar, A. K.: A Generalization of Reduced Modules, International Journal of Algebra, Vol. 8, 2014, no. 1, 39-45.
[6] Jabbar, A. K.: On Locally Reduced and Locally Multiplication Modules, International Mathematical Forum, Vol. 8, 2013, no. 18, 851-858,
[7] Jabbar, A. K.: A Generalization of prime and weakly prime submodules, Pure Mathematical Sciences, Vol. 2, 2013, No. 1, 1-11,
[8] Jabbar, A. K.: On Locally Artinian Modules, International Journal of Algebra, Vol. 6, 2012, No. 27, 1325-1334.
[9] Jabbar, A. K. and Mohammad R. R.: The Effect of Localization on Properties of Certain Types of Modules, The $2^{\text {nd }}$ International conference of the college of Education - University of Garmian held on 21-22/8/2016.
[10] Larsen, M. D. and McCarthy, P. J.: Multiplicative Theory of Ideals, Academic Press, New York and London, 1971.
[11] Lomp, C. and Pena, P. A. J. : A Note on Prime Modules, Divulgaciones Mathematicas, Vol. 8, No. 1, 2000, pp 31-42.
[12] Rajaee, S. : Comaximal Submodules of Multiplication Modules, International Mathematical Forum, Vol.5, 2010, no. 24, 1179-1183.

