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Abstract 

     In this paper Artinian and locally prime modules are studied and some 

characterizations of locally prime modules are given. Some conditions are given 

under which locally prime modules are almost prime modules and a nonzero 

module is a locally prime module. Some properties of Artinian and locally Artinian 

modules are given. Also, strongly reduced modules, primally reduced modules, 

radically reduced modules and some other types are studied and investigated and 

some properties of these types of modules are proved. In addition, some relations 

that concerning these types of modules are established and some characterizations 

of them are given. 
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1. Introduction 

     Let  be an module. A nonempty subset  of  is called a multiplicative 

system in , if  and  implies that  [10]. Let  be an 

module and  is a submodule of , the annihilator of  is defined as 

 [11]. As especial case, we have, 

. Let  be a submodule of an module , then we 

define  as  [12]. In particular, 

. Let  be a proper submodule of an 

module , then  is called a prime submodule of , if  and  such 

that , then  or  [4]. Let  be a proper submodule of an 

module , then  is called a semiprime submodule of , if  and  

such that , then  and  is called a semiprime module if the zero 

submodule of  is a semiprime submodule [4]. An module  is called a prime 

module if the zero submodule of  is a prime submodule of  [2]. An module 

 is called an almost prime module if each nonzero proper direct summand of  is 

a prime submodule of  [4]. An module  is called a fully prime module if 

every proper submodule of  is prime and it is called an almost fully prime 

module, if every non zero proper submodule of  is prime [4]. An module  is 

called a fully semiprime module if each proper submodule of   is semiprime and 
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it is called almost fully semiprime if each nonzero proper submodule of  is 

semiprime [4]. An module  is called a locally prime module if  is a prime 

module for each maximal ideal  of  [8]. An module  is called an Artinian 

module if it satisfies the descending chain condition on submodules, equivalently, 

if there exists a positive integer  such that , for all  and it is 

called a locally Artinian module if  is an Artinian module for each 

maximal ideal  of  [8]. The prime spectrum of an module  is denoted by 

 and defined as  is a prime submodule of  [3]. If  is 

a submodule of , then , for some  [1]. A proper 

submodule  of  is called a primal submodule if  forms an ideal of , this 

ideal is a proper ideal of  [1]. A proper submodule  of an module  is said 

to be a weakly prime submodule, if whenever , for , then  

 or  [2]. An module  is called a faithful module if 

 ( ) [8]. An module  is called a cyclic  module if 

, for some  [8]. Let  be an module. The primal spectrum of  

is denoted by , and is defind as   is a primal 

submodule of  and we say that   is a primally reduced  module if 

 [5]. An module  is called a reduced module if 

 and it is called locally reduced if  is reduced [6].      Let  be 

an module. The Jacobson spectrum of , denoted by 

, where  is the 

Jacobson radical of   and we say that  is radically reduced if  

[5]. Let  be an module and  a maximal ideal of , we define 

 and  and we say that  is a strongly 

reduced module if  [8]. A proper submodule  of  is called 

a maximal submodule if it is not properly contained in any proper submodule of  

and the Jacobson radical of , denoted by  (or , is defined to be the 

intersection of all the maximal ideal of  [5]. Let  be an module. A 

submodule  of  is called an essential submodule of (or  is an essential 

extension of ), written , if  is any nonzero submodule of , then 

, that means every non zero submodule of  must contain at least a non 

zero element of . Let  be an module and  are submodules of , then the 

set  is called independent if  . Let  be an module and  a 

submodule of . A submodule  of  is said to be relative complement for  if 

 and  is maximal with respect to the property (that is,  is 

not contained properly in any other submodule  with the property . Let 

 be an module. A(proper) submodule  of  is called a closed submodule of 

, written  , if  has no proper essential extension in  and if the 

submodule  is not closed in , then we write . A submodule  of  an 
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module   is called small ( or superfluous), in symbols , if  is any 

submodule of  such that , then  (equivalently, if  is the only 

submodule of  such that ). Let  be an module.  is called a 

multiplication module if for each submodule  of , there exists an ideal  of  

such that  [8]. Let  be an module.  is called a weak multiplication 

module if for every prime submodule  of  we have  [8]. Let  be 

a commutative ring with identity. Then  it is called a local ring if it has a unique 

maximal ideal. 

 

2. Artinian and Locally Prime Modules 

     This section is devoted to study Artinian and locally prime modules. Some 

characterizations of locally prime modules are given and some conditions are given 

under which locally prime modules are almost prime modules and also we give a 

condition which makes a nonzero module as a locally prime module and some 

properties of Artinian and locally Artinian modules are given. 

     In the first result we give some characterizations of locally prime modules. 

Theorem 2.1. Let  be an module. If  is a maximal ideal of  such that 

, then the following conditions are equivalent:                                                                              

(1)  is a locally prime module.                                                                                                

(2) Each proper direct summand of  is a prime submodule (that is, each nonzero 

summand becomes a prime module by itself).                                                                           

(3) All nonzero cyclic submodules of  are isomorphic.                                                         

(4) For all , we have . 

Proof. Since,  is locally prime, so that  is a prime module and as , 

the results will follow directly by [9, Theorem 2.10]. 

     The following theorem proves that under certain conditions locally prime 

modules become almost prime modules.  

Theorem 2.2. If  is a locally prime module with   and is a maximal 

ideal of , then  is an almost prime module. 

Proof. Since,  is a locally prime module that means  is a prime module, then 

by [9, Theorem 2.12], we get  is an almost prime module. 

     In the following result we give some conditions under which a nonzero module 

is locally prime. 

Theorem 2.3. If  is a nonzero module such that  and 

, then  is a locally prime module. 

Proof. Let  be any maximal ideal of , then , so by [7, 

Theorem 2.12], we get  is a prime submodule of  and by [7, Proposition 2.17], 

we have  is a proper submodule of . To show  is a prime submodule of 

. Let    where  and let , then , 
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that is . Now,  implies that , for some . Since, 

 is a prime submodule of , then we get , then we get 

, and as , we get , then we get  

. Hence,  is a prime submodule of , so that 

 is a prime module that means  is a locally prime module. 

     The following result shows that under certain conditions the localization of a 

prime submodule is prime.  

Theorem 2.4. Let  be a locally Artinian  module. If is a maximal ideal of  

and  is a primal submodule of  with  and  is a maximal ideal 

of , then  is a prime submodule of . 

Proof. As  is primal and  is a maximal ideal of , by [8, Proposition 2.24], 

we get  is a prime submodule of  and as , so by [8, Proposition 

2.21], we get  is a prime submodule of . 

Theorem 2.5. Let  be an  module,  a proper submodule of  with 

 and  a maximal ideal of . If   is a prime submodule of , then  

 is a maximal ideal of . 

Proof. Since,  is a prime submodule of  and , so by [8, 

Proposition 2.21], we get  is a prime submodule of  and then by [8, Proposition 

2.23], we get  is a maximal ideal of . 

Theorem 2.6. Let  be an Artinian module and  a maximal ideal of . If  is 

a proper submodule of  such that , then  is a prime submodule of 

 if and only if  is a maximal ideal of . 

Proof.  Let  be a prime submodule of . Since we have, , so by 

[8, Proposition 2.21], we get  is a prime submodule and then by [3, Corollary 

2.4], we get  is a maximal ideal of . 

 Let  be a maximal ideal of , then by [3, Corollary 2.4], we get  is a 

prime submodule and as , by [8, Proposition 2.21], we get  is a prime 

submodule of . 

     In the following result we give some conditions which make the localization of 

a locally Artinian module as a prime module. 

Theorem 2.7. Let  be a locally Artinian module and  a maximal ideal of  

such that  . If  is a primal ideal of , then  is a prime 

module if and only if  is a field. 

Proof. ) Let  be a prime module. Now, we have , thus by 

[8, Proposition 2.14], we get  is a prime module and by [8, Proposition 2.17], we 

have  is a field. 
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 As , we have  is a primal ideal of  and  

is a field and by [8, Proposition 2.17], we get  is a prime module, then by [9, 

Theorem 2.11], we get  is a prime module. 

     The next result proves that under certain condition the localization of a locally 

prime module is a prime module. 

Theorem 2.8. Let   be an  module. If  is locally prime and , 

then  is a prime module. 

Proof. By [8, Corollary 2.15], we get  is a prime module and by [9, Theorem 

2.11], we have  is prime. 

     In the following result we give some conditions under which we can 

characterize those faithful locally Artinian modules the localization of which are 

prime.   

Theorem 2.9. Let   be a faithful localy Artinian   module and  be a maximal 

ideal of . If  is a primal ring and , then  is a prime module if 

and only if   is a field. 

Proof ) Let  be a prime and  be a maximal ideal of , then 

, thus by [8, Proposition 2.14], we get  is prime and by [8, 

Corollary 2.19], we have  is a field. 

 By [8, Corollary 2.19], we get  is prime and by [9, Theorem 2.11], we have 

 is a prime. 

Theorem 2.10. Let   be an  module and  be a proper submodule of . If  

is a maximal ideal of  such that   and the DCC is satisfied on cyclic 

submodules of , then  is a prime submodule of  if and only if  is a 

weakly prime submodule of . 

Proof. ) Let  be a prime submodule of  , then by [8, Proposition 2.21], we 

get  is a prime submodule of , so by [8, Corollary 2.22], we get  is a weakly 

prime submodule of  and by [8, Proposition 2.21], we have  is a weakly prime 

submodule of . 

 Let  be a weakly prime submodule of  , then by [8, Proposition 2.21], we 

get  is a weakly prime submodule of , so by [8, Corollary 2.22], we get  is a 

prime submodule of  and by [8, Proposition 2.21], we have  is a prime 

submodule of . 

     In the following two results we give some further conditions under which the 

localization of (faithful) Artinian modules are prime. 

Theorem 2.11. Let  ba an Artinian  module and  ba a maximal ideal of  

such that  ,  then   is a prime module if and only if  is a 

field. 

Proof ) Let  be a prime module and , then by [8, Proposition 

2.14], we get  is a prime module and by [3, Proposition 2.1], we have 

 is a field. 
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 By [3, Proposition 2.1], we have  is a prime module and by [9, Theorem 

2.11], we get  is a prime module. 

Theorem 2.12. Let  be a faithful Artinian  module and  ba a maximal ideal 

of  such that   , then   is a prime module if and only if  is a field. 

Proof. ) Let  be a prime module. As, , by [8, Proposition 2.14], 

we get  is a prime module and by [3, Corollary 2.2], we have  is a field. 

 Let  be a field. By [3, Corollary 2.2], we have  is a prime module and by 

[9, Theorem 2.11], we get  is a prime module. 

 

3. Strongly Reduced, Primally Reduced and Radically Reduced Modules 

     In this section, further types of modules are studied and investigated such as, 

strongly reduced modules, primally reduced modules, radically reduced modules 

and some other types. Some properties of these types of modules are proved and 

some relations between them are determined and also some characterizations of 

them are given. 

     In the first result we prove that under certain condition, if the localization of a 

module is reduced, then the module itself is also reduced. 

Theorem 3.1. Let  be an module and be a maximal ideal of  such that 

. If  is a reduced module, then  is a reduced module.  

Proof. Let . Let , so that  is prime submodule of 

. Then by [8, Lemma 2.27], we have  for the prime submodule 

 of  with , that means  is a prime submodule 

of , then by [8, Lemma 2.27], we get  is a prime submodule of , that means 

, so we get  and then , thus we get 

, but  we get  and as , by [8, 

Lemma 2.1], we get  , so we have . That means  is a 

reduced module. 

     The next result shows that the localization of strongly reduced modules are also 

strongly reduced.  

Theorem 3.2. Let  be an module and be a maximal ideal of . If  is 

strongly reduced, then  is strongly reduced. 

Proof. Let , where  and . Let , then 

 and , so by [8, Proposition 2.20], we get 

, that means  and then by [8, Proposition 

2.21], we get   is a prime submodule of , that means  and 

, we get , so that  and by [8, Lemma 2.1], we 

have , thus we get , but  we get  and 
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 then , so we have , that means  is strongly 

reduced. 

     In the following result we give a condition under which the converse of the last 

theorem is true. 

Theorem 3.3. Let  be an module and be a prime ideal of  such that 

. If   is a strongly reduced module, then  is a strongly reduced 

module. 

Proof. Let  and let , that is  is prime submodule 

of  and . Then by [8, Lemma 2.27], we have  for the prime 

submodule  of  with , that means  is a prime 

submodule of  and , that means , so we get  

and , then we have , thus we get  and as 

, we get , then by [8, Lemma 2.1], we get , thus we 

have . That means,  is strongly reduced. 

     Next we prove that, under a certain condition those modules localization of 

which are strongly reduced are reduced.  

Corollary 3.4. If   is strongly reduced and be a maximal ideal of  such that 

, then  is reduced. 

Proof. Since,  is a strongly reduced module, so by Theorem 3.3, we get   

is a strongly reduced module, that gives . Then by [6, 

Theorem 2.4], we get . 

Theorem 3.5. Let  be an module and  a maximal ideal of , then we have  

. 

Proof. Let  , for  and . Then , for 

some . Let , that is  is prime submodule of . Then by [8, 

Lemma 2.27], we have  for the prime submodule  of 

 with , so that  and thus , from which we get 

 and so  and thus we have 

. Now, let , where  and 

. Let , so that  and , then by [8, 

Proposition 2.20], we get , that means  

and by [8, Proposition 2.21], we get   is a prime submodule of , that is 

, so that  and by [8, Lemma 2.1], we have , thus we 

get , this gives  , so that 

. Hence, we get . 
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     The following corollary proves that, if the localization of a module is strongly 

reduced, then this localization is reduced. 

Corollary 3.6. Let   be an module and  a maximal ideal of . If  is a 

strongly reduced module, then  is a reduced module. 

Proof. Since,  is strongly reduced so that . Then by Theorem 

3.5, we get  and by [6, Theorem 2.4], we get , 

that means,  is reduced. 

     Next, we prove that the localization of strongly reduced modules are reduced. 

Corollary 3.7. Let   be an module and  a maximal ideal of . If  is a 

strongly reduced   module, then  is a reduced module. 

Proof. Since,  is strongly reduced, so by Theorem 3.2, we get  is a strongly 

reduced module that is . By Theorem 3.5, we have  

 and then by [6, Theorem 2.4], we get 

. 

     In the following theorem, we prove that the localization of radically reduced 

modules are radically reduced.    

Theorem 3.8. Let  be an module and be a maximal ideal of . If   is 

radically reduced, then  is radically reduced. 

Proof. Let , where  and . Let , 

then  and . By [5, Proposition 2.5],   is a 

primal submodule of , that is , so that  is a proper 

ideal of  and since,  is a local ring with the unique maximal ideal , so that  

, so that  and then by [8, Lemma 2.1], we have 

, thus we get ,  but  we get  and 

 then , we have  that means  is  radically 

reduced. 

     Now, for the local rings we give a condition which makes the converse of the 

theorem is also true. 

Theorem 3.9. Let  be a local ring with as its unique maximal ideal and  be an 

module such that . If   is radically reduced, then  is radically 

reduced. 

Proof. Let  and , that is  is primal submodule 

of . Then by [5, Proposition 2.6], we have  for the primal submodule 

 of  with , that means  is a primal submodule 

of  and  and by [5, Proposition 2.6], we get  is a 

primal submodule of , so that  and  is a (proper) ideal of  

and thus we get , which means that , then 
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 and , we have , thus we get , but 

 we get , so by [8, Lemma 2.1], we get , then we 

have . That means  is a radically reduced module. 

     Next, we determine a relation between the primal spectrum and the Jacobson 

radical of a module.  

Theorem 3.10. Let  be an  module and let be a maximal ideal of , then 

. 

Proof. As, , we get . 

     The following theorem shows that the localization of the Jacobson radical of a 

module and the Jacobson radical of the localization are the same. 

 Theorem 3.11. Let  be a local ring with as its unique maximal ideal and  be 

an module, then we have . 

Proof. Let , where  and . Then, there exists  

such that . Now, let , that is  is primal 

submodule of . Then by [5, Proposition 2.6], we have  for the primal 

submodule  of  with , that is  

and  and by [5, Proposition 2.6], we get  is a primal 

submodule of , so that  and  is a (proper) ideal of  and 

thus we get , which means that  and thus 

, from which we get , so that  

and thus we have .  Now, let , 

where  and . Let , then  and 

. By [5, Proposition 2.5],   is a primal submodule of , 

that is , so that  is a proper ideal of  and since,  is a 

local ring with the unique maximal ideal , so that  , 

we get , so that  and then by [8, Lemma 2.1], we have 

, thus we get , this gives  , so that 

. Hence, we get 

. 

     The following corollary shows that, radically reducedness property implies 

primally reducedness for the localized module.   

Corollary 3.12. Let  be a local ring with as its unique maximal ideal and  be 

an module. If  is radically reduced, then  is primally reduced. 

Proof. Since,  is a radically reduced, so that . Then, by 

Theorem 3.11, we get  and by [5, Theorem 2.11], we get 
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 that means  is a primally reduced 

module. 

     In the following corollary, we give a condition which makes those modules the 

localization of which are radically reduced are primally reduced.  

Corollary 3.13. Let  be a local ring with as its unique maximal ideal and  be 

an module such that . If   is radically reduced, then  is primally 

reduced. 

Proof. By Theorem 3.9, we have   is a radically reduced and by [5, Corollary 

2.12], we get  is a primally reduced module. 

Corollary 3.14. Let  be a multiplication and a locally reduced  module and  

be a submodule of . If   is a primally reduced  module, then 

. 

Proof. By [5, Corollary 2.9], we have   is primally reduced and by [5, Proposition 

2.17], we get . 

     In the following theorem, we give a condition which makes reduced modules, 

radically reduced modules and primally reduced modules equivalent.  

Theorem 3.15. Let  be a local ring with  as its uniqe maximal ideal and  be an 

module such that . The following statements are equivalent:                               

(1)  is radically reduced.                                                                                                              

(2)  is primally reduced.                                                                                                           

(3)  is reduced. 

Proof. (1  By Corollary 3.13, we have   is a primally reduced module.            

(2  By [5, Theorem 2.16], we get  is a reduced module.                                        

(3  By [5, Theorem 2.16], we get  is radically reduced and by Theorem 3.8, 

we get  is radically reduced. 

     By assuming some conditions in the following theorem, we give a necessary and 

sufficient condition for a submodule to have a weakly prime localization.  

Theorem 3.16. Let  be an module and  a proper submodule of  with 

. If  is a maximal ideal of  such that , then  is 

weakly prime if and only if . 

 Proof.  Let  be weakly prime, then by [8, Proposition 2.21], we get  is 

weakly prime and then by [5, Proposition 2.15], we get . 

 suppose that . By [5, Proposition 2.15], we get  is weakly 

prime and by [8, Proposition 2.21], we get  is weakly prime. 

     Next, we give some conditions which make the modules that have weak 

multiplication localization as weak multiplication modules.  

Theorem 3.17. Let  be an module and  a proper submodule of  with 

. If  is a maximal ideal of  such that  is a weak multiplication 

module, then  is a weak multiplication module. 
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Proof. Let  be any maximal ideal of , then . If  ia any 

prime submodule of , then by [8, Proposition 2.21], we get  is a prime 

submodule of  and as  is a weak multiplication module, we have 

, then by [7, Theorem 2.21], we get , so by [7, 

Corollary 2.2], we get , that means  is a weak multiplication 

module. 

     In the following theorem, we prove that the localization of prime and regular 

modules are fully prime. 

Theorem 3.18. Let  be an module and  be a prime ideal of . If  is a 

prime and   regular module, then  is a fully prime module. 

Proof. By [4, Corollary 1.9], we get  is a fully prime module and by [9, Theorem 

2.1], we get  is a fully prime module.  

Theorem 3.19. If each cyclic submodule of an module  is a prime submodule 

and is a prime ideal of , then  is prime  and each cyclic submodule of  is 

semiprime. 

Proof. By [4, Corollary 1.9], we get  is prime and each cyclic submodule of  is 

semiprime and by [9, Theorem 2.11], we get  is prime. 

Theorem 3.20. Let  be an module and  be a proper submodule of . If  is 

a maximal ideal of  with  and  is a maximal ideal of , then 

 is a maximal ideal of . 

Proof. Since , implies that  is the identity of  and , let 

, implies that , we get , that means 

, which is a contradiction. To show that  is a maximal ideal of , 

so let , for the ideal  of . By [7, Proposition 2.16], we have 

, for the ideal  of , so that . Suppose 

that , so that . If , then , so , for some , 

then . Now, , so that  and thus . As  

is a maximal, we get , so that , that means  is a 

maximal ideal of . 

Theorem 3.21. Let  be a locally Artinian  module and  a proper submodule 

of . If  is a maximal ideal of  with  and  is a maximal ideal 

of , then   is a maximal ideal of . 

Proof. As  is proper, by [7, Proposition 2.17],we get  is a proper submodule of 

 and then by [7, Theorem 2.21], we have  and 

Since,  is a maximal ideal of  and  is an Artinian module, by [3, 

Corollary 2.4], we have  is a prime submodule of  and by [8, Proposition 

2.21], we get  is a prime submodule of  and by [8, Proposition 2.23], we get 

  is a maximal ideal of . 
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