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Abstract

In this paper we introduce the concept of 4, -open sets in topological spaces
and study topological properties of A, -derived, 1, -closure and 4, -interior of a
set using the concept of 4, -open sets.

1.Introduction

Throughout, X denote a topological spaces. Let A be a subset of X ,then the
closure and the interior of A are denoted by CI(A)and Int(A) respectively. A
subset A of a topological space (X ,r) is said to be semi open [1], if
A c Cl(Int(A)). The complement of a semi open set is said to be semi closed
[1].The family of all semi open (resp. semi closed) sets in a topological space
(X ,7)is denoted by SO (X ,z)or SO(X )(resp. SC(X ,z) or SC(X)). A subset
A of a topological space (X ,7)is said to be g-open [2], if A < CI(Int(CI(A)))).
The complement of a S -open set is said to be g-closed [2].The family of all 5-
open (resp. S -closed) sets in a topological space (X ,7)is denoted by SO(X,7)or
LO(X) (resp. SC(X,7) or SC(X)). We consider A as a function defined on
SO(X) into P(X) and A: SO(X) — P(X) is called an s-operation if
V < A ) for each non-empty semi open setV [3],[4]. It is assumed that A(¢) = ¢
and A(X ) =X for any s-operation A[3],[4]. Let 2:SO(X) —> P(X) be an s-
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operation, then a subset A of X is called a A -open set [5], if for each x e A there

exists a semi open set U such that x eU and A(U) < A.

The complement of a A" -open set is said to be A" -closed set which is equivalent

to A -closed set[6]. The family of all A"-open ( resp., A -closed ) subsets of a

topological space (X ,7)is denoted by SO, (X ,z)or SO,(X)  (resp. SC,(X,7)

or SC,(X)). Let A be asubset of X . Then:

(1) The A-closure of A (ACI(A)=ACI(A)) is the intersection of all 1™ -closed
(A -closed) sets containing A [5].

(2) The A-interior of A (AInt(A) = AInt(A)) is the union of all 1" -open( A -open)
sets of X contained in A [5].

(3)A point x X is said to be a A -limit point of A if every A -open (A -open)set
containing x contains a point of A different from x, and the set of all A -limit
points of A is called the A -derived set of A denoted by A'd (A) (Ad (A) [3],[4]).
An s-operation 1:SO(X) — P(X)is said to be:

(1) A-identity on SO(X) [7], if A(A)= A forall AeSO(X).

(2) A -monotone on SO(X) [7], if AcB implies A(A)c A(B) for all A, B
SO(X).

(3) A-idempotent on SO(X) [7], if A(A(A))=A(A) for all AcSO(X).

(4) A-additive on SO(X) [7], if A(AUB)=A(A)uU A(B), forall A, B € SO(X). If

LJA(A) = A A) for any collection {A};, ., = SO(X) then Ais said to be

iel iel
A -sub additive [7], on SO(X).
Definition 1.1 [6]
Let(X,7)be a topological space. A s-operation A is said to be A-regular if for

every semi open sets U and V of each x e X, there exists a semi open set W of X
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such that A(W) c A(U)~A(V). An s-operation A is said to be A -open if for every
semi open set U containing x e X, there exists a A -open set V such that x eV and
V < AU).

Proposition 1.2 [8]

Let{Fg{}aeJ be any collection of semi closed sets in a topological space (X ,7)

then ﬂ F_, is asemi closed set.

ael

Proposition 1.3 [3],[4]
For each point x e X ,x e ACI(A)=ACI(A)ifandonly if V N A = ¢, for
everyV €SO, (X )suchthat x eV .
Proposition 1.4 [6]
For a topological space (X ,7), SO,(X )<=SO(X).
Proposition 1.5 [3],[4]

Let{Aa}ael be any collection of A" -open sets in a topological space (X,7)

then | J A, isa 2"-open set.

a el

Proposition 1.6 [6]
For a topological space (X ,z), SC,(X)cSC(X).

2. A4-open sets

In this section, we introduce a new class of semi open sets called 2, -open sets
in topological spaces.

Definition 2.1

A A" -open subset A of atopological space (X,7) is called A4.-open if for each

x €A there exists a S-closed set K such that xe K c A. The complement of a 4, -

21 | acadj@garmian.edu.krd Conference Paper (July, 2017)




Ol 38 Al ddowe Journal of Garmian University luaydS S35 yk8aS

open set is said to be lﬁc-closed. The family of all ﬂ,ﬂc-open ( resp. /lﬂc-closed )
subsets of a topological space (X,7)is denoted by SO, (X,7) or SO, (X) (
resp. SC%(X,T) or SCﬁﬁC(X) ).
Proposition 2.2

For a topological space (X ,7), SO, (X)<SO,(X) < SO(X).
Proof. Every 4, -open set is 4 -open set by Definition 2.1. And every 1"-open set
IS semi open set by Proposition 1.4. This implies that SO, (X) < SO, (X)
c SO(X).
Example 2.3

Let X ={a,b,c}, and r={¢{c}{a,c} X } We define an s-operation
A:SO(X) = P(X) as:

A(A):{A if A:{a,_c} or ¢ |
X Otherwise
SO (X)) ={¢.{c}.{a.c}{b.c}, X} = SO(X)
SC (X)) ={#{a}{b}{a,b}, X} = FC(X)
SO,(X) ={¢.{a.c}, X}
S0, (X) ={#{c}. X }
We have {a,c}eSO,(X) but {a,c}¢ SOﬁﬁC(X).
Example 2.4
Let X ={a,b,c}, and r={p{a}{c}{a,c} X } We define an s-operation
A:S0(X) — P(X) as:

A if A={ab}or{b,c}org

A(A) = ) -
X Otherwise

SO (X)) ={¢.{a}{c}{a,b}.{a,c}{b,c}, X} = SO(X).
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SC (X)) ={#.{a}{b}.{c}.{a,b}-{b,c}, X} = SC(X).

SO,(X) ={¢A{a,b}{b.c}. X }

SO, (X) ={¢.{a,b}.{b.c}, X }.

We have {b,c}e SO%(X) but {b,c}¢r and {a} e but {a}¢ SO%(X).

Thus the family open sets and /Iﬂc-open set are independent.

The following result shows that any union oflﬁc-open set in a topological space
(X,7) is Ay -open set.

Proposition 2.5

Let{AO{}OCel be any collection of 4, -open sets in a topological space (X,7)

then | J A, isa 4, -open set.

a el

Proof. Let X e U A,. Then there exist ¢, el such that x €A_,. Since A, is

a el

a/”tﬂc-open set for all @ el then A is a A -open set for all & 1. This implies that

there exists a semi open set U such that AU)c A, < U A, therefore U A, is

a el a el

a A -open subset of (X ,7). Let xe U A, there exist fel such that xe A,

a el

Since A, is a4, -open set forall o <l, then there exist a #-closed set K such that

x eK cAj but Ay c J A, then x eK < |J A, Hence |J A, is ak,, -open

ael a el a el

set.
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The following example shows that the intersection of two 4, -open sets need
not be A, -open.

Example 2.6
Let X ={a,b,c}, and =P (X ). We define an s-operation 4:SO(X) — P(X)

as.

A if A={ab}or{b,c}org

A(A) = :
X Otherwise

SO(X) =P(X) = BO(X).

SC(X)=P(X) = pBC(X).

SO,(X) ={¢.{a.b}.{b.c}.X }

SO, (X) ={¢.{a,b}.{b.c}, X }.

We have{a,b}and{b, c}are 4, -open sets but{a, b} ~{b,c} ={b}is not 1, -open.

Proposition 2.7

The set Ais 4, -open set in the topological space (X,z) if and only if for each
X € A there exists axlﬁc-open set Bsuch that xeBc A
Proof. Suppose that A is ﬂ,ﬂc -open set in the topological space (X,7). Then for
each xe A, put B = A isa/, -open such that xe Bc A
Conversely, suppose that for each X A there exists aiﬂc -open set B such that
Xxe B, c A thus A:UBX,Where B, €50, (X) for each x. Therefore, A is a Age-

open set by Proposition 2.5.

Proposition 2.8
If the family of all semi open sets of a space X is a topology on X and A isaA-
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monotone s-operation, then the family of 4, -open sets is also a topology on X.

Proof. Clearly ¢, X e SO%(X) and by Proposition 2.5 the union of any family of

Ag.-open sets is A, -open. To complete the proof it is enough to show the finite

intersection of 4, -open sets is 4, -open. Let A and B be two 4, -open sets. Then

Aand B are both A -open and semi open sets. Since SO(X) is a topology on X so

ANB is semi open. Let x e ANB then xe A and xe B, then there exist semi open
sets F and E such that xeF c A(F) cA, and x eE c A(E)<B, since 4 is a

A -monotone s-operation and F NE is semi open set such that FNE < F and
F N E c E, this implies that A(F "E)c A(F)NA(E)cANB. Thus ANB is A" -
open set. Let x eAnB. Then xeAand xeB, but Aand B are 4, -open sets, so
there exist fg-closed sets K,and K, such that x e K, c A and x € K, < B which
implies that x e K, "K, c AnBthen Xx e K < ANB, where K =K, nK,, but

K, K, is g-closed set by Proposition 1.2, then ANB is a 4, -open set. Hence
ANB e SO% (X). Thus the family of 4, -open sets form a topology on X.

Proposition 2.9

Let{Ka}ad be any collection of 4, -closed sets in a topological space (X ,7)

then()K,, isa 4, -closed set.

ael

Proof. Obvious
Proposition 2.10
For a topological space (X ,7), SCAﬁC(X)g SC, (X) = SC(X).

Proof. Obvious
Theorem 2.11
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Let A be A-regular s-operation. If A and B are ﬂ,ﬂc-open sets in X, then AnB
is also a 4,,-open set.

Proof. Let x eAnB. Then xe A and x < B. Since A and B are 4, -open sets, there

exists semi open sets U and V such that xeU and A(U)c A, xeV and A(V)cB.
Since A is aA-regular s-operation, this implies there exists a semi open set W of X

such that AW)<c AU)NA(V) < ANB. This implies that A~B is A" -open set.
Let X eANB. Then Xe A and x e B, since A and B areiﬁc-open sets then there
exist g -closed sets K; and K; such that x eK, <A and x eK, < B, then
x eK,nK,cANB. Since K, nK, is g-closed set. Thus AnB is a4, -open

set.

3.1 Some properties of 4, -open sets
In the present section we study topological properties of /lﬂc-derived, /lﬂc-closure
and 4, -interior using the concept of ﬂ,ﬂc -open sets.

Definition 3.1

Let A be a subset of a space X. A point x e X is said to be a ﬂ,ﬂc-limit point of A
if for each 4, -open set U containing x, then U n(A\{x}) # ¢. The set of all -
limit points of A is called a4, -derived set of A and is denoted by A, D(A).

Lemma 3.2
Let A and B be subsets of a space X. If Ac B then 1, D(A) < 4,.D(B). Proof.

Obvious.

But in general 4, D(A) = 1,.D(B)does not imply A =B. For this we give the

following example:
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Example 3.3
Let X ={a,b,c}, and r={¢,{b}{b,c} X }. We define an s-operation

A1:S0(X) —» P(X) as:

AR :{A if A:{a,l_:)} or {b,c} or ¢ |
X Otherwise

SO(X) ={¢.{b}.{a,b} {b,c}, X} = SO(X),

SC(X) ={g{c}.{a}.{a.c}, X} = SC(X).

SO,(X)={¢{ab}{b.c} X}

SOﬂﬁC(X)z{;zﬁ,X}. If A={a,c} and B ={pb,c}, then 4, D(A) =4, D(B)= X, but

A=«B.

Some properties of 4, -derived sets are stated in the following proposition.

Proposition 3.4
Let A, B be any two subsets of a space X and A4:SO(X) — P(X) bean s-

operation. Then we have the following properties:
(1) 2,,D(9)=¢.

(2) If xe 4, D(A), then xed, D(A\{x}).

(3) 4,.D(A) U 4, D(B) = 1, D(AUB).

(4) 1,,D(ANB) < 4, D(A) N 4,.D(B).

(5) 4,.D(4,.D(A)\Ac 1, D(A).

(6) 1,,D(AUL A, D(A)) = AU 4, D(A).

27 | acadj@garmian.edu.krd Conference Paper (July, 2017)




et 38 Al ddowe Journal of Garmian University letaydS S35 6yk8aS

Proof.(1) Let x € X be arbitrary point of X , and let U be any /Iﬂc-open set
which contains x such that (¢ \{x} nU)=¢ then x ¢ A, D(¢). There fore
A5.D(9) = ¢.

(2) Let x € X and x € 4, D(A), then by Definition 3.1, forany U e SOﬂﬁc(X),
we have U m (A \{x}) = ¢, but (A \{x}) = (A \{x}) \{x}. Thus

(AN {XH) \{X}) nU =¢. Therefore x € 4, (A\{x}).

(3) Wehave Ac AuUB and B < A UB generally, then 1, D(A)
1,.D(AUB)and 4, D(B) c 4, D(AUB), therefore 21, D(A) U 4,.D(B)

c 4, D(AUB).

(4) We have AnB c Aand A nB < B generally, then 4, D(ANB) <
A,.D(A)and 4, D(ANB) c 1, D(B), therefore 4, D(ANB) = 4,.D(A)

N A,.D(B).

(5) If x € (4,.D (1,,D (A))\ A) and U is a 4, -open set containing x then

U N (4,DA)\{X}) =4 Lety eU n (1, D(A) \{x}) thensince y € 4, D(A)
andy eU,so0zeU n(A\{y})=¢. Let Then z #xforz eAand x ¢ A,
implies that U m (A \{x}) = ¢. Therefore x e 1, D(A).

(6) Let x € 4, D(AU 4, D(A)). If x € A, the result is obvious. So, let x €
(A;.D(A U 4, D(A)) \ A). Then, for any 4, -open sets U containing x,
UN((Aul,DA)\{Xx}) =g ThusU n(A\{x}) =4 orU n

(4, D(A) \{x}) # ¢. Now, it follows similarly from(5) that U m (A \{x}) = ¢.

Hence x € 4, D(A). Therefore in any case, 4, D(AU 4, D(A)) <A U 4, D(A).
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In general the equalities of (3),(4) and (5) of the above proposition does not
hold; it is shown in the following examples.
Example 3.5

Let X ={a,b,c,d}, and =P (X ). We define an s-operation 1:SO(X) —»

P(X) as:

A if A={a,c}or{b,c}or ¢

A(A) = ) .
X Otherwise

SO(X)=SC(X)=P(X)=p0(X)=pC(X).
SO, (X)={g{ack{b.c}X }.
30, (X)={¢.{a,c}{b,c}X}.
Let A={a,c}and B ={b,d}. then 4, D(A)={a,b,d}, 1,,D(B)={a,b,d}.
4.:D(A)U 4, D(B) ={a,b,d}.But AUB=X, so 2, D(AUB)=X.
Hence 1,.D(A) w 4,.D(B) = 4,,D(AU B).
Example 3.6
Let X={ab,c,d}, and =P (X). We define an s-operation
A:S0(X) — P(X) as:

1(A):{A if A:{a_,b,d}or;zﬁ.

X Otherwise

SO(X) =P(X) = pO(X) = pC(X) =7,

SO,(X)={¢.{ab,d}, X},

SO, (X)={¢.{a,b,d}, X}.

Let A={ac} and B={p,c} Then 2,D(A)={b,cd}, 4,D(B)={ac,d}

A,.D(A) N2, D(B)={b,c,d}{a,c,d}={c,d} and AnB={a,c}~{b,c}= {c}.
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Then 4, D(ANB) =¢, where Hence 1, D(A)n 4, D(B)= 1, D(ANB). We see
15.D(1;D(A) =2, D({b,c}) ={a,b}.  Then 1, D(1, D(A)\A=4¢, but
A4,D(A)={b,c}. This implies that 1, D(1,,D(A))\ A= 1, D(A).
Proposition 3.7

Let (X,7) be a topological space and A = X . Then A is aﬂ,ﬂc-closed subset of
Xifand only if 2, D(A)c A
Proof. Let A be a 4, -closed subset of X. Let x A, D(A) then x e A or
X e X \ Aif x € A there is nothing to prove, but if x € X \ A then
xe X VA X \VAis a4, -open, X\An (A\{x}) = ¢ then x¢ 1, D(A), we get
contradiction . Hence 1, D(A) < A.
Conversely: Let if 1, D(A) = A then x ¢ A, then xg 4, D(A) so there exist a

/Iﬁc -open set G which contain x such that G » (A\{x}) = ¢ but x ¢ A, so

G A=¢, then Gc X\ A then xe G c X \ Assince G is 44 -open set, then
X\ A'is A, -open set by Proposition 2.7, then A is 4, -closed set.

The following example shows that the 4, -derived set is not 4, -closed set in
general.
Example 3.8

Let X ={a,b,c}, and = ={¢,{a},{b}.{a,b}, X}. We define an s-operation
A:S0(X) —» P(X) as:

A if A={a,c}or{b,c}or ¢

A(A) = _
X Otherwise
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SO(X) ={¢{a}.{b}.{a,b},{b,c}.{a,c}, X}= SO(X).
SC(X) ={¢{a}.{b}.{c}.{b,c}.{a.c}, X} = SC(X).
SO, (X)={s{ac}{b.c}. X}
SO%(X) ={¢{a,c}{b,c}, X}. Now, if we let A={a,c}, then A,D(A)=
{a,b},but A, D(A) is not 4, -closed set.
Corollary 3.9
Let(X,7) be atopological space and A = X. Then A'd (A) A, D(A).
Proof. Let x e A'd (A) then (A\{x}) "U = ¢, for every U e SO, (X), then
(A\{X}) nU = ¢, forevery U e SOﬂﬂc(X), then x e 4, D(A). Hence

A'd(A) < 4, D(A). Finally, we have A'd (A) < 4,,D(A).

The converse of the above proposition is not true in general as shown by
following example.
Remark 3.10
The converse of the Corollary 3.9 is not true in general. Now, in Example 3.3, if

we let A={b,c} then 4, D(A)=X, Ad(A)={a,c}, buti,,D(A)E Ad(A).

Definition 3.11

For any subset A of a topological space (X ,7), the 4, -closure of A, denoted by

4, CI(A), is the intersection of all A -closed sets containing A.

Here we introduce some properties of 4, -closure of the sets.

Proposition 3.12
For subsets A, B of a topological space (X,7), the following statements are true.
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(1) Ac 4,CI(A).

(2) 4, CI(A) is A -closed set in X.

(3) A, CI(A) is smallest 4, -closed set which contain A.
(4) A is Ay -closed set if and only if A=4,CI(A).

(5) 4, Cl(g)=¢ and 1, CI(X)=X.

(6) If 4,.CI(A) N 4,.CI(B)=¢, then AnB=4¢.

(7) A4,.Cl(A) = AU, D(A).

(8) If A =B. Then 1, CI(A) c 4,CI(B).

(9) 4, ClI(A) v 4, CI(B) c 1, CI(AUB).

(10) A,CI(AnB)c 1, .CI(A) "1, CI(B).

Proof. (1) From the definition 2, CI(A) = ﬂ F, where F is 1, -closed set, then

AcF

Ac 2, CI(A).

(2) A,4CI(A) = () F, where F is 4,-closed set, then () F is 4, -closed set by

AcF AcF

Proposition 2.9. Then 4, CI(A) is lﬂc-closed setin X. From (1) and (2) we get
A4 CI(A) is A4 -closed and contain A, it is enough to show 4,.CI(A) is

smallest.

(3) Let H be any 4, -closed set such that Ac H, then ﬂ F < H then

AcF

A4 CI(A) < H. Therefore 4, CI(A) is smallest 4, -closed set which contain A.
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(4) Let A bea A, -closed set, then A is smallest 4, -closed set which contain A.

Therefore 4, CI(A) = A. Conversely, Let A=, CI(A) then A is 1, -closed

set.

(5)Since ¢ and X are 4, -closed sets. Therefore 4,.Cl(¢) = ¢ and
A,.CI(X) = X.

(6) If possible suppose that A B = ¢, there exist x e X and x € AN B, then
x € A and x € B, therefore x € 1, CI(A) and x € 4, CI(B). Then

x € 1,.CI(A) n 4, CI(B), a contradiction. Therefore AN B =¢.
(7) Since 4,,D(A) = 4,CI(A) and Ac 4, CI(A) then AU 4, D(A)

< 4, CI(A). On the other hand. To show 4, CI(A) = AU 4, D(A) since

A CI(A) is the smallest A4 -closed set containing A so itis enough to prove that
AU A, D(A) is A, -closed set. Let x ¢ AU A, D(A). Implies that x ¢ A and

x & 1, CI(A). Since x ¢ 4, D(A), there exists a Ag-open set G of x which

contains no point of A other than x but x ¢ A. So G contains no point of A which

this implies that G — X \ A. Again, G isa 4, -open set of each of its points. But
as G does not contain any point of A, no point of G can be a 4, -limit point of A.
Therefore, no point of G can belong to 2, D(A). This implies that

G < X\ 4, D(A). Hence it follows that xe G <

XVAN X\ A4, D(A) =X\ (AU 4, D(A), therefore, AU 1, D(A) is A4 -closed
set. Hence 4, CI(A) = AU 4, D(A). Thus 4, CI(A) = AU 4, D(A).
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(8) We have Ac B this implies that 1, D(A) = 4,.D(B) by Lemma 3.2.
Therefore AU 2, D(A) < B U 4,.D(B), since A < B, this implies that

4,.CI(A) < 2,,CI(B) by (7).

(9) Since Ac AUB and B ¢ A UB, this implies that 4, CI(A) <
4,.CI(AuB)and 4,CI(B) < 4,CI(AUB),by (8). So
A,.CI(A) v 1, CI(B) = 1, CI(AUB).

(10) Since AnB c Aand A nB < B this implies that /IﬂCCI(Am B)
4,CI(A) and 1, CI(AnB) < 1,CI(B),by (8). So
4,.CI(ANB) c 1, CI(A) n 4, CI(B).

Proposition 3.13
For each point xe X, xe4,CI(A) if and only if V~A=¢, for every

Ve SOlﬁC(X) such that xeV.
Proof. Let x e 4, CI(A) and suppose that V. n A = ¢, for some A4.-0pen set V
which containsx. Then X \V is 4, -closed and Ac (X \V), thus

4,CI(A) < (X \V). Implies that x € (X \'V), a contradiction. Therefore
V. nA=#g.

The converse of Proposition 3.12(8) is not true in general as it is shown by the
following example:
Remark 3.14

In Example 3.3 if we let A={a,c} and B={b,c} then 2, CI(A)=

4,.CI(B) = X, but A= B.
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In general the equalities of the Proposition 3.12(9)(10) do not hold, as it is
shown in the following examples:
Example 3.15

Let X ={a,b,c}, and = =P(X). We define an s-operation 1:SO(X) — P(X)
as:

A if A={a,b}or{a,c}or ¢
X Otherwise '

/I(A)={
SO(X) =P(X) = BO(X) = BC(X).

SO, (X )={¢{a,b}{ac} X }.

SO, (X) ={¢{a,b}.{a,c} X}.

SCﬂﬁC(X):{gﬁ,{b},{c},X}. Now, if we let A={b} and B={c} then 1,CI(A)
={pb} and 1, CI(B)={c}, but 1,CI(AUB)=X, where AUB ={b,c} Hence we
get 4, CI(AUB)= 1, CI(A)UA4,CI(B).
Example 3.16

Let X ={a,b,c}, and 7 ={¢,{a} {b}{a,b}, X}, We define an s-operation

A1:SO(X) — P(X) as:

A(A)z{A if beA- |

X Otherwise

SO(X) ={¢.{a}.{b}.{a.b}.{a,c}.{b,c}, X} = SO(X).
SC(X) ={¢.{a}{b}.{c}{a,c}.{b,c}, X} = SC(X).
SO,(X)={¢.{o}{a.b}{b.c}. X}

Soﬂﬁc (X) :{¢,{b},{a, b},{b,C}, X}
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SC%(X) ={¢,{a},{cH{a,c}, X}. Now, if we let A={a} and B={b} then
4,Cl(A)={a} and 1, CI(B) =X, but 1,CI(AnB) =¢, where AnB =g. Hence
we get 1, CI(AnB)= 4, CI(A)n 4, CI(B).
Proposition 3.17

For asubset A of atopological space (X ,7), ACI(A) A, CI(A).
Proof. Let x e ACI(A) then ANV = ¢, foreveryV SO, (X ) such that
x €V by Proposition 1.2. Then A nV = ¢, foreveryV e SO%(X). Then
x € A, CI(A) by Proposition 3.13. Hence ACI(A) c 4,CI(A). Finally, we have
ATI(A) < 4, CI(A).

The converse of the Proposition 3.17 is not true in general as shown by
following example.
Remark 3.18

In Example 3.3 if we let A ={a}, then ACI(A)={a}, but 4,.CI(A)= X, but
25 CI(A) € A CI(A).
Definition 3.19

Let A be a subset of a topological space (X ,7). A point xe X is said to be

Ag-interior point of A, if there exists a A, -open set U containing x such that

U < A The set of all 4, -interior points of A is called 4, -interior of A and is

denoted by 4, Int(A).
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Proposition 3.20

For subsets A, B of a topological space (X ,7), the following statements hold.
(1)  AglInt(A) is the union of all 1, -open sets which are contained in A,
(2)  AglInt(A) is a A, -opensetin X.

B)  AgInt(A)cA
(4) A, Int(A) is the largest Ag.-0pen set contained in A.
(5)  Alis Ay -open setifand only if A, Int(A)=A
(6)  AgInt(A,Int(A)) = A, Int(A).
(7)  If AcB, then A, Int(A) c 4, Int(B).
(8)  AglInt(g)=¢ and 4, Int(X)=X.
9  If AnB=4¢, then A, Int(A) A, Int(B) =¢.
(10) A, Int(A) L A, Int(B) = A, Int(AU B).
(11) A, Int(ANB) = A, Int(A) N A, Int(B).

Proof. Obvious.
In general the equalities of (9), (10) and (11) of the above proposition does not
hold, as it is shown in the following examples:

Example 3.21
Let X ={a,b,c}, and = ={¢,{a}.{b}.{a,b}, X}, * ={¢4,{c}.{a,c},{b,c}, X}. We
define an s-operation A4:SO(X) — P(X) as:

A if A={ab}

AR :{CI(A) Otherwise
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SO(X) ={¢.{a}{b}.{a.b}.{a,c}{b,c}, X}= SO(X).
SC(X) ={¢.{a}{b}.{c}{a,c}.{b,c}, X} = SC(X).
SO,(X)={s.{a.b}, X }.
S0, (X)={4{a.b}, X}.
If A={a} and B={b}, then A, Int(A)=¢=A4,Int(B) but A, Int(AUB)= {a,b},
where AUB ={a,b}. Thus 4, Int(AUB) = 4, Int(A)u 4, Int(B).
Example 3.22
Let X ={a,b,c},andz ={¢,{a}.{b}.{a,b}, X}, ° ={s.{c}.{a,c}.{b,c}, X}.
We define an s-operation A:SO(X) —» P(X) as:

A if AeSO(X)
X Otherwise

A(A):{
SO(X) ={¢.{a}{b}.{a.b}.{a,c}{b,c}, X}= SO(X).

SC(X) ={¢.{a}{b}{c}{a,c}.{b,c}, X} = SC(X).
SO,(X)={¢.{a}.{b}{a.b}{a,.c}{b.c} X }.

SO, (X) ={¢{a}.{b}{a,b}{a,c}.{b,c}, X}.

Let A={a,c} and B={b,c}. Then A,Int(A)={a,c} and A, Int(B)= {b,c},
but A, Int(ANB) =4, Int({c}) =g ={a,ct{b,c}={c} where ANB={c}
Therefore A, Int(ANB) = A, Int(A) N A, Int(A).

Remark 3.23
1) In Example 3.3 if we let A ={a,b} and B={b,c} then 1, Int(A) N

A, Int(B) = ¢, but A "B ={o}# ¢.
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2) In Example 3.3 if we let A={b,c} and B ={a}, then 4, Int(A)=¢= 4, Int(B).

But A=B.
Proposition 3.24
Fora subset A of atopological space (X ,7), 4, Int(A)= A\, d(X\A).

Proof. If xe A\ 4, d(X\A) then xe A and x& 4, D(X \ A) and so there exists
a lﬂc-open set U containing x suchthat U " X \ A=¢. Then xeU < A, hence

X € Ay Int(A), this implies that A\ A1, D(X\ A) = 4, Int(A). On the other hand, if
x € A4 Int(A) then x ¢ 4, D(X \ A) since 4, Int(A) is 4, -open and

AgINt(A) N X\ A=¢. Hence A, Int(A)= A\ 4, D(X\A).

Proposition 3.25

For any subset A of a topological space (X ,z), The following statements are

true.
(1) X\ A, Int(A) = 2,CI(X \ A).

(2) A, CI(A) = X\ A, Int(X \ A).

(3) X\, CI(A) = A, Int(X \ A).

(4) AgInt(A) = X\ 4, CI(X \ A).

Proof. (1) X \ A, Int(A)= X \ (A\ 2,,D(X\A)) = (X\A)« 4, D(X\A)

= A CI(X\ A).

(2) We have X \ A, Int(A)= A, CI(X \ A) by(1), replace Aby X \ A then
X\ Ay Int(X \ A) = 4, CI(A).
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(3)We have X \ A, Int(X \ A)= 4, CI(A) by(2), complement both sides then
X\ A CI(A) = A, Int(X \ A).

(4)We have X \ 4, CI(A) = A, Int(X \ A) by(3), replaceAby X \ A then
AgInt(A) = X\ 1, CI(X \ A).

Proposition 3.26
For a subset A of a topological space (X ,7), 4, Int(A) = A'Int(A).

Proof.Obvious.

The converse of Proposition 3.26, is not true in general, we can show by the
following example:
Example 3.27

In Example 3.3 if we let A={ab} then A,Int(A)=¢ and A’ Int(A)=
{a.b}. Therefore 7" Int(A) €A, Int(A).
Corollary 3.28

If A is a subset of a topological space (X,z), then A, Int(A) < A'Int(A)
< A c 2CI(A) c 4, CI(A).

Proof. Obvious.
Theorem 3.29
Let A, B be subsets of X. If 1:SO(X) — P(X) is aA-regular s-operation Then:

(1) ﬂSCd (AU B) = ﬂSCd (A) U lSCd (B)'
(2) A.CI(AUB)=A_CI(A) UACI(B).
(3) A, Int(AnB) = A_Int(A) A Int(B).
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Proof. (1) A.D(A) U A,.D(B) < 4D (A UB) by Proposition 3.4. Let x €
A.D(AUB), if xg A _D(A) U A,.D(B) thenx ¢ A _D(A) and x ¢ A _D(B) then
there exist /"tﬂc-open sets U and V contain x such that (A\{x}) " U #¢ and
(B\{X}) NV = ¢, then (AuB)\{x}) n(U nV) =¢, but 1 is A-regular then
UnV is/lﬂC -open by Proposition 2.11, so x ¢ 1, D(AU B) a contradiction. Thus
4, D(A) U 4, D(B) < 4, D(AU B). Hence we get

A5D(AUB) = 4, D(A) U 1,.D(B).

(2) 4, Cl(AUB) =(AuB) U 4, D(AUB) by Proposition 3.12(7). But

A,.D(AUB) =1, D(A) U 1, D(B) by (1), therefore 1, CI(AUB) =
(AUB) U (4, D(A) L 4,,D(B)), this implies that A, CI(AUB) =

((Au 2,.D(A) v (B U 1, D(B)) =4, CI(A) U 4, CI(B) by Proposition 3.12(7).
(3) AgxInt(ANB) =(AnB)\ 1,,D(X \ (AnB)) by Proposition 3.24. So

AgINt(ANB) =(AnB)\ 1, D(X \ AU X \ B), but 4, D(X\ AU X \B)
=4, D(X'\ A) U 4,,D(X \ B) by(1), thisimplies 4, Int(AnB) =
(ANB) \ (4, D(X'\ A) U 2, D(X \ B)). Therefore A, Int(AnB) =

A\ 4, D(X\VA) U B\ 4, D(X\B)=2,Int(A) N A, Int(B) by Proposition 3.24.
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