$\lambda_{\beta c}$ - OPEN SETS AND TOPOLOGICAL PROPERTIES
 Sarhad F. Namiq
 Mathematics Department, College of Education, University of
 Garmyan, Kurdistan- Region, Iraq.
 Email: sarhad.faiq@garmian.edu.krd

Abstract

In this paper we introduce the concept of $\lambda_{\beta c}$-open sets in topological spaces and study topological properties of $\lambda_{\beta c}$-derived, $\lambda_{\beta c}$-closure and $\lambda_{\beta c}$-interior of a set using the concept of $\lambda_{\beta c}$-open sets.

1.Introduction

Throughout, X denote a topological spaces. Let A be a subset of X, then the closure and the interior of A are denoted by $C l(A)$ and $\operatorname{Int}(A)$ respectively. A subset A of a topological space (X, τ) is said to be semi open [1], if $A \subseteq C l(\operatorname{Int}(A))$. The complement of a semi open set is said to be semi closed [1].The family of all semi open (resp. semi closed) sets in a topological space (X, τ) is denoted by $S O(X, \tau)$ or $S O(X)$ (resp. $S C(X, \tau)$ or $S C(X)$). A subset A of a topological space (X, τ) is said to be β-open [2], if $A \subseteq C l(\operatorname{Int}(C l(A))))$. The complement of a β-open set is said to be β-closed [2].The family of all β open (resp. β-closed) sets in a topological space (X, τ) is denoted by $\beta O(X, \tau)$ or $\beta O(X)$ (resp. $\beta C(X, \tau)$ or $\beta C(X)$). We consider λ as a function defined on $S O(X)$ into $P(X)$ and $\lambda: S O(X) \rightarrow P(X)$ is called an s-operation if $V \subseteq \lambda(V)$ for each non-empty semi open set V [3],[4]. It is assumed that $\lambda(\phi)=\phi$ and $\lambda(X)=X$ for any s-operation $\lambda[3],[4]$. Let $\lambda: S O(X) \rightarrow P(X)$ be an s-
operation, then a subset A of X is called a λ^{*}-open set [5], if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$.

The complement of a λ^{*}-open set is said to be λ^{*}-closed set which is equivalent to λ-closed set[6]. The family of all λ^{*}-open (resp., λ^{*}-closed) subsets of a topological space (X, τ) is denoted by $S O_{\lambda}(X, \tau)$ or $S O_{\lambda}(X) \quad$ (resp. $S C_{\lambda}(X, \tau)$ or $\left.S C_{\lambda}(X)\right)$. Let A be a subset of X. Then:
(1) The λ-closure of $A\left(\lambda^{*} C l(A)=\lambda C l(A)\right)$ is the intersection of all λ^{*}-closed (λ-closed) sets containing $A[5]$.
(2) The λ-interior of $A\left(\lambda^{*} \operatorname{Int}(A)=\lambda \operatorname{Int}(A)\right)$ is the union of all λ^{*}-open $(\lambda$-open $)$ sets of X contained in A [5].
(3) A point $x \in X$ is said to be a λ-limit point of A if every λ^{*}-open (λ-open)set containing x contains a point of A different from x, and the set of all λ-limit points of A is called the λ-derived set of A denoted by $\lambda^{*} d(A)(\lambda d(A)[3],[4])$. An s-operation $\lambda: S O(X) \rightarrow P(X)$ is said to be:
(1) λ-identity on $S O(X)$ [7], if $\lambda(A)=A$ for all $A \in S O(X)$.
(2) λ-monotone on $S O(X)$ [7], if $A \subseteq B$ implies $\lambda(A) \subseteq \lambda(B)$ for all $A, B \in$ $S O(X)$.
(3) λ-idempotent on $S O(X)$ [7], if $\lambda(\lambda(A))=\lambda(A)$ for all $A \in S O(X)$.
(4) λ-additive on $S O(X)$ [7], if $\lambda(A \cup B)=\lambda(A) \cup \lambda(B)$, for all $A, B \in S O(X)$. If $\bigcup_{i \in I} \lambda\left(A_{i}\right) \subseteq \lambda\left(\bigcup_{i \in I} A_{i}\right)$ for any collection $\left\{A_{i}\right\}_{i \in I} \subseteq S O(X)$ then λ is said to be λ-sub additive [7], on $S O(X)$.

Definition 1.1 [6]

Let (X, τ) be a topological space. A s-operation λ is said to be λ-regular if for every semi open sets U and V of each $x \in X$, there exists a semi open set W of X
such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$. An s-operation λ is said to be λ-open if for every semi open set U containing $x \in X$, there exists a λ^{*}-open set V such that $x \in V$ and $V \subseteq \lambda(U)$.

Proposition 1.2 [$\underline{8}]$

Let $\left\{F_{\alpha}\right\}_{\alpha \in J}$ be any collection of semi closed sets in a topological space (X, τ) then $\bigcap_{\alpha \in J} F_{\alpha}$ is a semi closed set.

Proposition 1.3 [3],[4]

For each point $x \in X, x \in \lambda^{*} C l(A)=\lambda C l(A)$ if and only if $V \cap A \neq \phi$, for every $V \in S O_{\lambda}(X)$ such that $x \in V$.

Proposition 1.4 [6]

For a topological space $(X, \tau), S O_{\lambda}(X) \subseteq S O(X)$.

Proposition 1.5 [3],[4]

Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be any collection of λ^{*}-open sets in a topological space (X, τ) then $\bigcup_{\alpha \in I} A_{\alpha}$ is a λ^{*}-open set.

Proposition 1.6 [6]

For a topological space $(X, \tau), S C_{\lambda}(X) \subseteq S C(X)$.

2. $\lambda_{\beta c}$-open sets

In this section, we introduce a new class of semi open sets called $\lambda_{\beta c}$-open sets in topological spaces.

Definition 2.1

A λ^{*}-open subset A of a topological space (X, τ) is called $\lambda_{\beta c}$-open if for each $x \in A$ there exists a β-closed set K such that $x \in K \subseteq A$. The complement of a $\lambda_{\beta c}{ }^{-}$
open set is said to be $\lambda_{\beta c}$-closed. The family of all $\lambda_{\beta c}$-open (resp. $\lambda_{\beta c}$-closed) subsets of a topological space (X, τ) is denoted by $S O_{\lambda_{\beta c}}(X, \tau)$ or $S O_{\lambda_{\beta c}}(X)$ (resp. $S C_{\lambda_{\beta c}}(X, \tau)$ or $\left.S C_{\lambda_{\beta c}}(X)\right)$.

Proposition 2.2

For a topological space $(X, \tau), S O_{\lambda_{\beta c}}(X) \subseteq S O_{\lambda}(X) \subseteq S O(X)$.
Proof. Every $\lambda_{\beta c}$-open set is λ-open set by Definition 2.1. And every λ^{*}-open set is semi open set by Proposition 1.4. This implies that $S O_{\lambda_{g c}}(X) \subseteq S O_{\lambda}(X)$ $\subseteq S O(X)$.

Example 2.3

Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{c\},\{a, c\}, X\}$. We define an s-operation
$\lambda: S O(X) \rightarrow P(X)$ as:

$$
\lambda(A)=\left\{\begin{array}{lll}
A & \text { if } & A=\{a, c\} \text { or } \phi \\
X & \text { Otherwise }
\end{array} .\right.
$$

$S O(X)=\{\phi,\{c\},\{a, c\},\{b, c\}, X\}=\beta O(X)$
$S C(X)=\{\phi,\{a\},\{b\},\{a, b\}, X\}=\beta C(X)$
$S O_{\lambda}(X)=\{\phi,\{a, c\}, X\}$
$S O_{\lambda_{\beta c}}(X)=\{\phi,\{c\}, X\}$
We have $\{a, c\} \in S O_{\lambda}(X)$ but $\{a, c\} \notin S O_{\lambda_{\beta c}}(X)$.

Example 2.4

Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{a\},\{c\},\{a, c\}, X\}$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as:

$$
\lambda(A)=\left\{\begin{array}{lc}
A & \text { if } \\
X & A=\{a, b\} \text { or }\{b, c\} \text { or } \phi \\
X & \text { Otherwise }
\end{array}\right.
$$

$S O(X)=\{\phi,\{a\},\{c\},\{a, b\},\{a, c\},\{b, c\}, X\}=\beta O(X)$.
$S C(X)=\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{b, c\}, X\}=\beta C(X)$.
$S O_{\lambda}(X)=\{\phi,\{a, b\},\{b, c\}, X\}$
$S O_{\lambda_{\beta c}}(X)=\{\phi,\{a, b\},\{b, c\}, X\}$.
We have $\{b, c\} \in S O_{\lambda_{\beta_{c}}}(X)$ but $\{b, c\} \notin \tau$ and $\{a\} \in \tau$ but $\{a\} \notin S O_{\lambda_{\beta c}}(X)$.
Thus the family open sets and $\lambda_{\beta c}$-open set are independent.

The following result shows that any union of $\lambda_{\beta c}$-open set in a topological space (X, τ) is $\lambda_{\beta c}$-open set.

Proposition 2.5

Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be any collection of $\lambda_{\beta c}$-open sets in a topological space (X, τ) then $\bigcup_{\alpha \in I} A_{\alpha}$ is a $\lambda_{\beta c}$-open set.

Proof. Let $x \in \bigcup_{\alpha \in I} A_{\alpha}$. Then there exist $\alpha_{0} \in I$ such that $x \in A_{\alpha 0}$. Since A_{α} is a $\lambda_{\beta c}$-open set for all $\alpha \in I$ then A_{α} is a λ^{*}-open set for all $\alpha \in I$. This implies that there exists a semi open set U such that $\lambda(U) \subseteq A_{\alpha_{0}} \subseteq \bigcup_{\alpha \in I} A_{\alpha}$ therefore $\bigcup_{\alpha \in I} A_{\alpha}$ is a λ^{*}-open subset of (X, τ). Let $x \in \bigcup_{\alpha \in I} A_{\alpha}$ there exist $\beta \in I$ such that $x \in A_{\beta}$. Since A_{α} is a $\lambda_{\beta c}$-open set for all $\alpha \in I$, then there exist a β-closed set K such that $x \in K \subseteq A_{\beta}$ but $A_{\beta} \subseteq \bigcup_{\alpha \in I} A_{\alpha}$ then $x \in K \subseteq \bigcup_{\alpha \in I} A_{\alpha}$. Hence $\bigcup_{\alpha \in I} A_{\alpha}$ is a $\lambda_{\beta c}$-open set.

The following example shows that the intersection of two $\lambda_{\beta c}$-open sets need not be $\lambda_{\beta c}$-open.

Example 2.6

Let $X=\{a, b, c\}$, and $\tau=P(X)$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$
as:

$$
\begin{aligned}
& \lambda(A)=\left\{\begin{array}{cc}
A & \text { if } \\
X & A=\{a, b\} \text { or }\{b, c\} \text { or } \phi
\end{array} .\right. \\
& S O(X)=P(X)=\beta O(X) . \\
& S C(X)=P(X)=\beta C(X) . \\
& S O_{\lambda}(X)=\{\phi,\{a, b\},\{b, c\}, X\} \\
& S O_{\lambda_{\beta c}}(X)=\{\phi,\{a, b\},\{b, c\}, X\} .
\end{aligned}
$$

We have $\{a, b\}$ and $\{b, c\}$ are $\lambda_{\beta c}$-open sets but $\{a, b\} \cap\{b, c\}=\{b\}$ is not $\lambda_{\beta c}$-open.

Proposition 2.7

The set A is $\lambda_{\beta c}$-open set in the topological space (X, τ) if and only if for each $x \in A$ there exists a $\lambda_{\beta c}$-open set B such that $x \in B \subseteq A$.

Proof. Suppose that A is $\lambda_{\beta c}$-open set in the topological space (X, τ). Then for each $x \in A$, put $B=A$ is a $\lambda_{\beta c}$-open such that $x \in B \subseteq A$.

Conversely, suppose that for each $x \in A$ there exists a $\lambda_{\beta c}$-open set B such that $x \in B_{x} \subseteq A$, thus $A=\bigcup B_{x}$, where $B_{x} \in S O_{\lambda_{\beta c}}(X)$ for each x. Therefore, A is a $\lambda_{\beta c}{ }^{-}$ open set by Proposition 2.5.

Proposition 2.8

If the family of all semi open sets of a space X is a topology on X and λ is a λ -
monotone s-operation, then the family of $\lambda_{\beta c}$-open sets is also a topology on X.
Proof. Clearly $\phi, X \in S O_{\lambda_{\beta c}}(X)$ and by Proposition 2.5 the union of any family of $\lambda_{\beta c}$-open sets is $\lambda_{\beta c}$-open. To complete the proof it is enough to show the finite intersection of $\lambda_{\beta c}$-open sets is $\lambda_{\beta c}$-open. Let A and B be two $\lambda_{\beta c}$-open sets. Then A and B are both λ^{*}-open and semi open sets. Since $S O(X)$ is a topology on X, so $A \cap B$ is semi open. Let $x \in A \cap B$ then $x \in A$ and $x \in B$, then there exist semi open sets F and E such that $x \in F \subseteq \lambda(F) \subseteq A$, and $x \in E \subseteq \lambda(E) \subseteq B$, since λ is a λ-monotone s-operation and $F \cap E$ is semi open set such that $F \cap E \subseteq F$ and $F \cap E \subseteq E$, this implies that $\lambda(F \cap E) \subseteq \lambda(F) \cap \lambda(E) \subseteq A \cap B$. Thus $A \cap B$ is $\lambda^{*}-$ open set. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$, but A and B are $\lambda_{\beta c}$-open sets, so there exist β-closed sets K_{1} and K_{2} such that $x \in K_{1} \subseteq A$ and $x \in K_{2} \subseteq B$ which implies that $x \in K_{1} \cap K_{2} \subseteq A \cap B$ then $x \in K \subseteq A \cap B$, where $K=K_{1} \cap K_{2}$, but $K_{1} \cap K_{2}$ is β-closed set by Proposition 1.2, then $A \cap B$ is a $\lambda_{\beta c}$-open set. Hence $A \cap B \in S O_{\lambda_{\beta c}}(X)$. Thus the family of $\lambda_{\beta c}$-open sets form a topology on X.

Proposition 2.9

Let $\left\{K_{\alpha}\right\}_{\alpha \in J}$ be any collection of $\lambda_{\beta c}$-closed sets in a topological space (X, τ) then $\bigcap_{\alpha \in J} K_{\alpha}$ is a $\lambda_{\beta c}$-closed set.

Proof. Obvious

Proposition 2.10

For a topological space $(X, \tau), S C_{\lambda_{\beta_{c}}}(X) \subseteq S C_{\lambda}(X) \subseteq S C(X)$.
Proof. Obvious
Theorem 2.11

Let λ be λ-regular s-operation. If A and B are $\lambda_{\beta c}$-open sets in X, then $A \cap B$ is also a $\lambda_{\beta c}$-open set.

Proof. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$. Since A and B are $\lambda_{\beta c}$-open sets, there exists semi open sets U and V such that $x \in U$ and $\lambda(U) \subseteq A, x \in V$ and $\lambda(V) \subseteq B$. Since λ is a λ-regular s-operation, this implies there exists a semi open set W of X such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V) \subseteq A \cap B$. This implies that $A \cap B$ is λ^{*}-open set. Let $x \in A \cap B$. Then $x \in A$ and $x \in B$, since A and B are $\lambda_{\beta c}$-open sets then there exist β-closed sets K_{1} and K_{2} such that $x \in K_{1} \subseteq A$ and $x \in K_{2} \subseteq B$, then $x \in K_{1} \cap K_{2} \subseteq A \cap B$. Since $K_{1} \cap K_{2}$ is β-closed set. Thus $A \cap B$ is a $\lambda_{\beta c}$-open set.

3.1 Some properties of $\lambda_{\beta c}$-open sets

In the present section we study topological properties of $\lambda_{\beta c}$-derived, $\lambda_{\beta c}$-closure and $\lambda_{\beta c}$-interior using the concept of $\lambda_{\beta c}$-open sets.

Definition 3.1

Let A be a subset of a space X. A point $x \in X$ is said to be a $\lambda_{\beta c}$-limit point of A if for each $\lambda_{\beta c}$-open set U containing x, then $U \cap(A \backslash\{x\}) \neq \phi$. The set of all $\lambda_{\beta c}{ }^{-}$ limit points of A is called a $\lambda_{\beta c}$-derived set of A and is denoted by $\lambda_{\beta c} D(A)$.

Lemma 3.2

Let A and B be subsets of a space X. If $A \subseteq B$ then $\lambda_{\beta c} D(A) \subseteq \lambda_{\beta c} D(B)$. Proof. Obvious.

But in general $\lambda_{\beta c} D(A)=\lambda_{\beta c} D(B)$ does not imply $A=B$. For this we give the following example:

Example 3.3

Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{b\},\{b, c\}, X\}$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as:

$$
\lambda(A)= \begin{cases}A & \text { if } A=\{a, b\} \text { or }\{b, c\} \text { or } \phi \\ X & \text { Otherwise }\end{cases}
$$

$S O(X)=\{\phi,\{b\},\{a, b\},\{b, c\}, X\}=\beta O(X)$,
$S C(X)=\{\phi,\{c\},\{a\},\{a, c\}, X\}=\beta C(X)$.
$S O_{\lambda}(X)=\{\phi,\{a, b\},\{b, c\}, X\}$.
$S O_{\lambda_{\beta c}}(X)=\{\phi, X\}$. If $A=\{a, c\}$ and $B=\{b, c\}$, then $\lambda_{\beta c} D(A)=\lambda_{\beta c} D(B)=X$, but $A \neq B$.

Some properties of $\lambda_{\beta c}$-derived sets are stated in the following proposition.

Proposition 3.4

Let A, B be any two subsets of a space X and $\lambda: S O(X) \rightarrow P(X)$ be an soperation. Then we have the following properties:
(1) $\lambda_{\beta c} D(\phi)=\phi$.
(2) If $x \in \lambda_{\beta c} D(A)$, then $x \in \lambda_{\beta c} D(A \backslash\{x\})$.
(3) $\lambda_{\beta c} D(A) \cup \lambda_{\beta c} D(B) \subseteq \lambda_{\beta c} D(A \cup B)$.
(4) $\lambda_{\beta c} D(A \cap B) \subseteq \lambda_{\beta c} D(A) \cap \lambda_{\beta c} D(B)$.
(5) $\lambda_{\beta c} D\left(\lambda_{\beta c} D(A)\right) \backslash A \subseteq \lambda_{\beta c} D(A)$.
(6) $\lambda_{\beta c} D\left(A \cup \lambda_{\beta c} D(A)\right) \subseteq A \cup \lambda_{\beta c} D(A)$.

Proof.(1) Let $x \in X$ be arbitrary point of X, and let U be any $\lambda_{\beta c}$-open set which contains x such that $(\phi \backslash\{x\} \cap U)=\phi$ then $x \notin \lambda_{\beta c} D(\phi)$. There fore $\lambda_{\beta c} D(\phi)=\phi$.
(2) Let $x \in X$ and $x \in \lambda_{\beta c} D(A)$, then by Definition 3.1, for any $U \in S O_{\lambda_{\beta c}}(X)$, we have $U \cap(A \backslash\{\mathrm{x}\}) \neq \phi$, but $(A \backslash\{x\})=(A \backslash\{x\}) \backslash\{x\}$. Thus
$((A \backslash\{x\}) \backslash\{x\}) \cap U \neq \phi$. Therefore $x \in \lambda_{\beta c}(A \backslash\{x\})$.
(3) We have $A \subseteq A \cup B$ and $B \subseteq A \cup B$ generally, then $\lambda_{\beta c} D(A) \subseteq$ $\lambda_{\beta c} D(A \cup B)$ and $\lambda_{\beta c} D(B) \subseteq \lambda_{\beta c} D(A \cup B)$, therefore $\lambda_{\beta c} D(A) \cup \lambda_{\beta c} D(B)$ $\subseteq \lambda_{\beta c} D(A \cup B)$.
(4) We have $A \cap B \subseteq A$ and $A \cap B \subseteq B$ generally, then $\lambda_{\beta c} D(A \cap B) \subseteq$ $\lambda_{\beta c} D(A)$ and $\lambda_{\beta c} D(A \cap B) \subseteq \lambda_{\beta c} D(B)$, therefore $\lambda_{\beta c} D(A \cap B) \subseteq \lambda_{\beta c} D(A)$ $\cap \lambda_{\beta c} D(B)$.
(5) If $x \in\left(\lambda_{\beta c} D\left(\lambda_{\beta c} D(A)\right) \backslash A\right)$ and U is a $\lambda_{\beta c}$-open set containing x then $U \cap\left(\lambda_{\beta c} D(A) \backslash\{x\}\right) \neq \phi$. Let $y \in U \cap\left(\lambda_{\beta c} D(A) \backslash\{x\}\right)$ then since $y \in \lambda_{\beta c} D(A)$ and $y \in U$, so $z \in U \cap(A \backslash\{y\}) \neq \phi$. Let Then $z \neq x$ for $z \in A$ and $x \notin A$, implies that $U \cap(A \backslash\{x\}) \neq \phi$. Therefore $x \in \lambda_{\beta c} D(A)$.
(6) Let $x \in \lambda_{\beta c} D\left(A \cup \lambda_{\beta c} D(A)\right)$. If $x \in A$, the result is obvious. So, let $x \in$ $\left(\lambda_{\beta c} D\left(A \cup \lambda_{\beta c} D(A)\right) \backslash A\right)$. Then, for any $\lambda_{\beta c}$-open sets U containing x, $U \cap\left(\left(A \cup \lambda_{\beta c} D(A)\right) \backslash\{x\}\right) \neq \phi$. Thus $U \cap(A \backslash\{x\}) \neq \phi$ or $U \cap$ $\left(\lambda_{\beta c} D(A) \backslash\{x\}\right) \neq \phi$. Now, it follows similarly from(5) that $U \cap(A \backslash\{x\}) \neq \phi$. Hence $x \in \lambda_{\beta c} D(A)$. Therefore in any case, $\lambda_{\beta c} D\left(A \cup \lambda_{\beta c} D(A)\right) \subseteq A \cup \lambda_{\beta c} D(A)$.

In general the equalities of (3),(4) and (5) of the above proposition does not hold; it is shown in the following examples.

Example 3.5

Let $X=\{a, b, c, d\}$, and $\tau=P(X)$. We define an s-operation $\lambda: S O(X) \rightarrow$ $P(X)$ as:

$$
\begin{aligned}
& \lambda(A)= \begin{cases}A & \text { if } A=\{a, c\} \text { or }\{b, c\} \text { or } \phi \\
X & \text { Otherwise }\end{cases} \\
& S O(X)=S C(X)=P(X)=\beta O(X)=\beta C(X) . \\
& S O_{\lambda}(X)=\{\phi,\{a, c\},\{b, c\} X\} . \\
& S O_{\lambda_{\beta c}}(X)=\{\phi,\{a, c\},\{b, c\} X\} .
\end{aligned}
$$

Let $A=\{a, c\}$ and $B=\{b, d\}$. then $\lambda_{\beta c} D(A)=\{a, b, d\}, \lambda_{\beta c} D(B)=\{a, b, d\}$.
$\lambda_{\beta c} D(A) \cup \lambda_{\beta c} D(B)=\{a, b, d\}$. But $A \cup B=X$, so $\lambda_{s c} D(A \cup B)=X$.
Hence $\lambda_{\beta c} D(A) \cup \lambda_{\beta c} D(B) \neq \lambda_{\beta c} D(A \cup B)$.

Example 3.6

Let $X=\{a, b, c, d\}$, and $\tau=P(X)$. We define an s-operation
$\lambda: S O(X) \rightarrow P(X)$ as:
$\lambda(A)=\left\{\begin{array}{ll}A & \text { if } A=\{a, b, d\} \text { or } \phi \\ X & \text { Otherwise }\end{array}\right.$.
$S O(X)=P(X)=\beta O(X)=\beta C(X)=\tau$,
$S O_{\lambda}(X)=\{\phi,\{a, b, d\}, X\}$,
$S O_{\lambda_{\beta_{c}}}(X)=\{\phi,\{a, b, d\}, X\}$.
Let $A=\{a, c\}$ and $B=\{b, c\}$. Then $\lambda_{\beta c} D(A)=\{b, c, d\}, \lambda_{\beta c} D(B)=\{a, c, d\}$ $\lambda_{\beta c} D(A) \cap \lambda_{\beta c} D(B)=\{b, c, d\} \cap\{a, c, d\}=\{c, d\}$ and $A \cap B=\{a, c\} \cap\{b, c\}=\{c\}$.

Then $\lambda_{\beta c} D(A \cap B)=\phi$, where Hence $\lambda_{\beta c} D(A) \cap \lambda_{\beta c} D(B) \neq \lambda_{\beta c} D(A \cap B)$. We see $\lambda_{\beta c} D\left(\lambda_{\beta c} D(A)\right)=\lambda_{\beta c} D(\{b, c\})=\{a, b\} . \quad$ Then $\quad \lambda_{\beta c} D\left(\lambda_{\beta c} D(A)\right) \backslash A=\phi$, but $\lambda_{\beta c} D(A)=\{b, c\}$. This implies that $\lambda_{\beta c} D\left(\lambda_{\beta c} D(A)\right) \backslash A \neq \lambda_{\beta c} D(A)$.

Proposition 3.7

Let (X, τ) be a topological space and $A \subseteq X$. Then A is a $\lambda_{\beta c}$-closed subset of X if and only if $\lambda_{\beta c} D(A) \subseteq A$.

Proof. Let A be a $\lambda_{\beta c}$-closed subset of X. Let $x \in \lambda_{\beta c} D(A)$ then $x \in A$ or $x \in X \backslash A$ if $x \in A$ there is nothing to prove, but if $x \in X \backslash A$ then $x \in X \backslash A, X \backslash A$ is a $\lambda_{\beta c}$-open, $X \backslash A \cap(A \backslash\{x\})=\phi$ then $x \notin \lambda_{\beta c} D(A)$, we get contradiction. Hence $\lambda_{\beta c} D(A) \subseteq A$.

Conversely: Let if $\lambda_{\beta c} D(A) \subseteq A$ then $x \notin A$, then $x \notin \lambda_{\beta c} D(A)$ so there exist a $\lambda_{\beta c}$-open set G which contain x such that $G \cap(A \backslash\{x\})=\phi$ but $x \notin A$, so $G \cap A=\phi$, then $G \subseteq X \backslash A$, then $x \in G \subseteq X \backslash A$ since G is $\lambda_{\beta c}$-open set, then $X \backslash A$ is $\lambda_{\beta c}$-open set by Proposition 2.7, then A is $\lambda_{\beta c}$-closed set.

The following example shows that the $\lambda_{\beta c}$-derived set is not $\lambda_{\beta c}$-closed set in general.

Example 3.8

Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as:

$$
\lambda(A)=\left\{\begin{array}{lc}
A & \text { if } A=\{a, c\} \text { or }\{b, c\} \text { or } \phi \\
X & \text { Otherwise }
\end{array}\right.
$$

$S O(X)=\{\phi,\{a\},\{b\},\{a, b\},\{b, c\},\{a, c\}, X\}=\beta O(X)$.
$S C(X)=\{\phi,\{a\},\{b\},\{c\},\{b, c\},\{a, c\}, X\}=\beta C(X)$.
$S O_{\lambda}(X)=\{\phi,\{a, c\},\{b, c\}, X\}$.
$S O_{\lambda_{\beta c}}(X)=\{\phi,\{a, c\},\{b, c\}, X\}$. Now, if we let $A=\{a, c\}$, then $\lambda_{\beta c} D(A)=$ $\{a, b\}$, but $\lambda_{\beta c} D(A)$ is not $\lambda_{\beta c}$-closed set.

Corollary 3.9

Let (X, τ) be a topological space and $A \subseteq X$. Then $\lambda^{*} d(A) \subseteq \lambda_{\beta c} D(A)$.
Proof. Let $x \in \lambda^{*} d(A)$ then $(A \backslash\{x\}) \cap U \neq \phi$, for every $U \in S O_{\lambda}(X)$, then
$(A \backslash\{x\}) \cap U \neq \phi$, for every $U \in S O_{\lambda_{\beta c}}(X)$, then $x \in \lambda_{\beta c} D(A)$. Hence $\lambda^{*} d(A) \subseteq \lambda_{\beta c} D(A)$. Finally, we have $\lambda^{*} d(A) \subseteq \lambda_{\beta c} D(A)$.

The converse of the above proposition is not true in general as shown by following example.

Remark $\mathbf{3 . 1 0}$

The converse of the Corollary 3.9 is not true in general. Now, in Example 3.3, if we let $A=\{b, c\}$ then $\lambda_{\beta c} D(A)=X, \lambda^{*} d(A)=\{a, c\}$, but $\lambda_{\beta c} D(A) \nsubseteq \lambda^{*} d(A)$.

Definition 3.11

For any subset A of a topological space (X, τ), the $\lambda_{\beta c}$-closure of A, denoted by $\lambda_{\beta c} C l(A)$, is the intersection of all $\lambda_{\beta c}$-closed sets containing A.

Here we introduce some properties of $\lambda_{\beta c}$-closure of the sets.

Proposition 3.12

For subsets A, B of a topological space (X, τ), the following statements are true.
(1) $A \subseteq \lambda_{\beta c} C l(A)$.
(2) $\lambda_{\beta c} C l(A)$ is $\lambda_{\beta c}$-closed set in X.
(3) $\lambda_{\beta c} C l(A)$ is smallest $\lambda_{\beta c}$-closed set which contain A.
(4) A is $\lambda_{\beta c}$-closed set if and only if $A=\lambda_{\beta c} C l(A)$.
(5) $\lambda_{\beta c} C l(\phi)=\phi$ and $\lambda_{\beta c} C l(X)=X$.
(6) If $\lambda_{\beta c} C l(A) \cap \lambda_{\beta c} C l(B)=\phi$, then $A \cap B=\phi$.
(7) $\lambda_{\beta c} C l(A)=A \cup \lambda_{\beta c} D(A)$.
(8) If $A \subseteq B$. Then $\lambda_{\beta c} C l(A) \subseteq \lambda_{\beta c} C l(B)$.
(9) $\lambda_{\beta c} C l(A) \cup \lambda_{\beta c} C l(B) \subseteq \lambda_{\beta c} C l(A \cup B)$.
(10) $\quad \lambda_{\beta c} C l(A \cap B) \subseteq \lambda_{\beta c} C l(A) \cap \lambda_{\beta c} C l(B)$.

Proof. (1) From the definition $\lambda_{\beta c} C l(A)=\bigcap_{A \subseteq F} F$, where F is $\lambda_{\beta c}$-closed set, then $A \subseteq \lambda_{\beta c} C l(A)$.
(2) $\lambda_{\beta c} C l(A)=\bigcap_{A \subseteq F} F$, where F is $\lambda_{\beta c}$-closed set, then $\bigcap_{A \subseteq F} F$ is $\lambda_{\beta c}$-closed set by Proposition 2.9. Then $\lambda_{\beta c} C l(A)$ is $\lambda_{\beta c}$-closed set in X. From (1) and (2) we get $\lambda_{\beta c} C l(A)$ is $\lambda_{\beta c}$-closed and contain A, it is enough to show $\lambda_{\beta c} C l(A)$ is smallest.
(3) Let H be any $\lambda_{\beta c}$-closed set such that $A \subseteq H$, then $\bigcap_{A \subseteq F} F \subseteq H$ then $\lambda_{\beta c} C l(A) \subseteq H$. Therefore $\lambda_{\beta c} C l(A)$ is smallest $\lambda_{\beta c}$-closed set which contain A.
(4) Let A be a $\lambda_{\beta c}$-closed set, then A is smallest $\lambda_{\beta c}$-closed set which contain A. Therefore $\lambda_{\beta c} C l(A)=A$. Conversely, Let $A=\lambda_{\beta c} C l(A)$ then A is $\lambda_{\beta c}$-closed set.
(5) Since ϕ and X are $\lambda_{\beta c}$-closed sets. Therefore $\lambda_{\beta c} C l(\phi)=\phi$ and $\lambda_{\beta c} C l(X)=X$.
(6) If possible suppose that $A \cap B \neq \phi$, there exist $x \in X$ and $x \in A \cap B$, then $x \in A$ and $x \in B$, therefore $x \in \lambda_{\beta c} C l(A)$ and $x \in \lambda_{\beta c} C l(B)$. Then $x \in \lambda_{\beta c} C l(A) \cap \lambda_{\beta c} C l(B)$, a contradiction. Therefore $A \cap B=\phi$.
(7) Since $\lambda_{\beta c} D(A) \subseteq \lambda_{\beta c} C l(A)$ and $A \subseteq \lambda_{\beta c} C l(A)$ then $A \cup \lambda_{\beta c} D(A)$
$\subseteq \lambda_{\beta c} C l(A)$. On the other hand. To show $\lambda_{\beta c} C l(A) \subseteq A \cup \lambda_{\beta c} D(A)$ since $\lambda_{\beta c} C l(A)$ is the smallest $\lambda_{\beta c}$-closed set containing A so it is enough to prove that $A \cup \lambda_{\beta c} D(A)$ is $\lambda_{\beta c}$-closed set. Let $x \notin A \cup \lambda_{\beta c} D(A)$. Implies that $x \notin A$ and $x \notin \lambda_{\beta c} C l(A)$. Since $x \notin \lambda_{\beta c} D(A)$, there exists a $\lambda_{\beta c}$-open set G of x which contains no point of A other than x but $x \notin A$. So G contains no point of A which this implies that $G \subseteq X \backslash A$. Again, G is a $\lambda_{\beta c}$-open set of each of its points. But as G does not contain any point of A, no point of G can be a $\lambda_{\beta c}$-limit point of A. Therefore, no point of G can belong to $\lambda_{\beta c} D(A)$. This implies that $G \subseteq X \backslash \lambda_{\beta c} D(A)$. Hence it follows that $x \in G \subseteq$ $X \backslash A \cap X \backslash \lambda_{\beta c} D(A)=X \backslash\left(A \cup \lambda_{\beta c} D(A)\right)$, therefore, $A \cup \lambda_{\beta c} D(A)$ is $\lambda_{\beta c}$-closed set. Hence $\lambda_{\beta c} C l(A) \subseteq A \cup \lambda_{\beta c} D(A)$. Thus $\lambda_{\beta c} C l(A)=A \cup \lambda_{\beta c} D(A)$.
(8) We have $A \subseteq B$ this implies that $\lambda_{\beta c} D(A) \subseteq \lambda_{\beta c} D(B)$ by Lemma 3.2.

Therefore $A \cup \lambda_{\beta c} D(A) \subseteq B \cup \lambda_{\beta c} D(B)$, since $A \subseteq B$, this implies that $\lambda_{\beta c} C l(A) \subseteq \lambda_{\beta c} C l(B)$ by (7).
(9) Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, this implies that $\lambda_{\beta c} C l(A) \subseteq$ $\lambda_{\beta c} C l(A \cup B)$ and $\lambda_{\beta c} C l(B) \subseteq \lambda_{\beta c} C l(A \cup B)$, by (8). So $\lambda_{\beta c} C l(A) \cup \lambda_{\beta c} C l(B) \subseteq \lambda_{\beta c} C l(A \cup B)$.
(10) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$ this implies that $\lambda_{\beta c} C l(A \cap B) \subseteq$ $\lambda_{\beta c} C l(A)$ and $\lambda_{\beta c} C l(A \cap B) \subseteq \lambda_{\beta c} C l(B)$, by (8). So $\lambda_{\beta c} C l(A \cap B) \subseteq \lambda_{\beta c} C l(A) \cap \lambda_{\beta c} C l(B)$.

Proposition 3.13

For each point $x \in X, x \in \lambda_{\beta c} C l(A)$ if and only if $V \cap A \neq \phi$, for every $V \in S O_{\lambda_{\beta_{c}}}(X)$ such that $x \in V$.

Proof. Let $x \in \lambda_{\beta c} C l(A)$ and suppose that $V \cap A \neq \phi$, for some $\lambda_{\beta c}$ - open set V which contains x. Then $X \backslash V$ is $\lambda_{\beta c}$ closed and $A \subseteq(X \backslash V)$, thus $\lambda_{\beta c} C l(A) \subseteq(X \backslash V)$. Implies that $x \in(X \backslash V)$, a contradiction. Therefore $V \cap A \neq \phi$.

The converse of Proposition 3.12(8) is not true in general as it is shown by the following example:

Remark 3.14

In Example 3.3 if we let $A=\{a, c\}$ and $B=\{b, c\}$ then $\lambda_{\beta c} C l(A)=$ $\lambda_{\beta c} C l(B)=X$, but $A \neq B$.

In general the equalities of the Proposition 3.12(9)(10) do not hold, as it is shown in the following examples:

Example 3.15

Let $X=\{a, b, c\}$, and $\tau=P(X)$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$
as:
$\lambda(A)=\left\{\begin{array}{ll}A & \text { if } A=\{a, b\} \text { or }\{a, c\} \text { or } \phi \\ X & \text { Otherwise }\end{array}\right.$.
$S O(X)=P(X)=\beta O(X)=\beta C(X)$.
$S O_{\lambda}(X)=\{\phi,\{a, b\},\{a, c\}, X\}$.
$S O_{\lambda_{\beta_{c}}}(X)=\{\phi,\{a, b\},\{a, c\}, X\}$.
$S C_{\lambda_{\beta c}}(X)=\{\phi,\{b\},\{c\}, X\}$. Now, if we let $A=\{b\}$ and $B=\{c\}$ then $\lambda_{\beta c} C l(A)$ $=\{b\}$ and $\lambda_{\beta c} C l(B)=\{c\}$, but $\lambda_{\beta c} C l(A \cup B)=X$, where $A \cup B=\{b, c\}$. Hence we get $\lambda_{\beta c} C l(A \cup B) \neq \lambda_{\beta c} C l(A) \cup \lambda_{\beta c} C l(B)$.

Example 3.16

Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{a\},\{b\}\{a, b\}, X\}$, We define an s-operation
$\lambda: S O(X) \rightarrow P(X)$ as:

$$
\lambda(A)=\left\{\begin{array}{lc}
A & \text { if } \\
X \in A \\
X & \text { Otherwise }
\end{array} .\right.
$$

$S O(X)=\{\phi,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}, X\}=\beta O(X)$.
$S C(X)=\{\phi,\{a\},\{b\},\{c\},\{a, c\},\{b, c\}, X\}=\beta C(X)$.
$S O_{\lambda}(X)=\{\phi,\{b\},\{a, b\},\{b, c\}, X\}$
$S O_{\lambda_{\beta_{c}}}(X)=\{\phi,\{b\},\{a, b\},\{b, c\}, X\}$
$S C_{\lambda_{\beta c}}(X)=\{\phi,\{a\},\{c\}\{a, c\}, X\}$. Now, if we let $A=\{a\}$ and $B=\{b\}$ then $\lambda_{\beta c} C l(A)=\{a\}$ and $\lambda_{\beta c} C l(B)=X$, but $\lambda_{\beta c} C l(A \cap B)=\phi$, where $A \cap B=\phi$. Hence we get $\lambda_{\beta c} C l(A \cap B) \neq \lambda_{\beta c} C l(A) \cap \lambda_{\beta c} C l(B)$.

Proposition 3.17

For a subset A of a topological space $(X, \tau), \lambda^{*} C l(A) \subseteq \lambda_{\beta c} C l(A)$.
Proof. Let $x \in \lambda^{*} C l(A)$ then $A \cap V \neq \phi$, for every $V \in S O_{\lambda}(X)$ such that $x \in V$ by Proposition 1.2. Then $A \cap V \neq \phi$, for every $V \in S O_{\lambda_{\beta c}}(X)$. Then $x \in \lambda_{\beta c} C l(A)$ by Proposition 3.13. Hence $\lambda^{*} C l(A) \subseteq \lambda_{\beta c} C l(A)$. Finally, we have $\lambda^{*} C l(A) \subseteq \lambda_{\beta c} C l(A)$.

The converse of the Proposition 3.17 is not true in general as shown by following example.

Remark 3.18

In Example 3.3 if we let $A=\{a\}$, then $\lambda^{*} C l(A)=\{a\}$, but $\lambda_{\beta c} C l(A)=X$, but $\lambda_{\beta c} C l(A) \nsubseteq \lambda^{*} C l(A)$.

Definition 3.19

Let A be a subset of a topological space (X, τ). A point $x \in X$ is said to be $\lambda_{\beta c}$-interior point of A, if there exists a $\lambda_{\beta c}$-open set U containing x such that $U \subseteq A$. The set of all $\lambda_{\beta c}$-interior points of A is called $\lambda_{\beta c}$-interior of A and is denoted by $\lambda_{\beta c} \operatorname{Int}(A)$.

Proposition 3.20

For subsets A, B of a topological space (X, τ), the following statements hold.
(1) $\lambda_{\beta c} \operatorname{Int}(A)$ is the union of all $\lambda_{\beta c}$-open sets which are contained in A.
(2) $\lambda_{\beta c} \operatorname{Int}(A)$ is a $\lambda_{\beta c}$-open set in X.
(3) $\quad \lambda_{\beta c} \operatorname{Int}(A) \subseteq A$.
(4) $\quad \lambda_{\beta c} \operatorname{Int}(A)$ is the largest $\lambda_{\beta c}$-open set contained in A.
(5) $\quad A$ is $\lambda_{\beta c}$-open set if and only if $\lambda_{\beta c} \operatorname{Int}(A)=A$.
(6) $\lambda_{\beta c} \operatorname{Int}\left(\lambda_{\beta c} \operatorname{Int}(A)\right)=\lambda_{\beta c} \operatorname{Int}(A)$.
(7) If $A \subseteq B$, then $\lambda_{\beta c} \operatorname{Int}(A) \subseteq \lambda_{\beta c} \operatorname{Int}(B)$.
(8) $\lambda_{\beta c} \operatorname{Int}(\phi)=\phi$ and $\lambda_{\beta c} \operatorname{Int}(X)=X$.
(9) If $A \cap B=\phi$, then $\lambda_{\beta c} \operatorname{Int}(A) \cap \lambda_{\beta c} \operatorname{Int}(B)=\phi$.
(10) $\lambda_{\beta c} \operatorname{Int}(A) \cup \lambda_{\beta c} \operatorname{Int}(B) \subseteq \lambda_{\beta c} \operatorname{Int}(A \cup B)$.
(11) $\lambda_{\beta c} \operatorname{Int}(A \cap B) \subseteq \lambda_{\beta c} \operatorname{Int}(A) \cap \lambda_{\beta c} \operatorname{Int}(B)$.

Proof. Obvious.

In general the equalities of (9), (10) and (11) of the above proposition does not hold, as it is shown in the following examples:

Example 3.21

Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}, \tau^{c}=\{\phi,\{c\},\{a, c\},\{b, c\}, X\}$. We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as:

$$
\lambda(A)=\left\{\begin{array}{ll}
A & \text { if } A=\{a, b\} \\
C l(A) & \text { Otherwise }
\end{array} .\right.
$$

$S O(X)=\{\phi,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}, X\}=\beta O(X)$.
$S C(X)=\{\phi,\{a\},\{b\},\{c\},\{a, c\},\{b, c\}, X\}=\beta C(X)$.
$S O_{\lambda}(X)=\{\phi,\{a, b\}, X\}$.
$S O_{\lambda_{\beta c}}(X)=\{\phi,\{a, b\}, X\}$.
If $A=\{a\}$ and $B=\{b\}$, then $\lambda_{\beta c} \operatorname{Int}(A)=\phi=\lambda_{\beta c} \operatorname{Int}(B)$ but $\lambda_{\beta c} \operatorname{Int}(A \cup B)=\{a, b\}$, where $A \cup B=\{a, b\}$. Thus $\lambda_{\beta c} \operatorname{Int}(A \cup B) \neq \lambda_{\beta c} \operatorname{Int}(A) \cup \lambda_{\beta c} \operatorname{Int}(B)$.

Example 3.22

Let $X=\{a, b, c\}$, and $\tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}, \tau^{c}=\{\phi,\{c\},\{a, c\},\{b, c\}, X\}$.
We define an s-operation $\lambda: S O(X) \rightarrow P(X)$ as:

$$
\lambda(A)=\left\{\begin{array}{lc}
A & \text { if } A \in S O(X) \\
X & \text { Otherwise }
\end{array}\right.
$$

$S O(X)=\{\phi,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}, X\}=\beta O(X)$.
$S C(X)=\{\phi,\{a\},\{b\},\{c\},\{a, c\},\{b, c\}, X\}=\beta C(X)$.
$S O_{\lambda}(X)=\{\phi,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}, X\}$.
$S O_{\lambda_{\beta c}}(X)=\{\phi,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}, X\}$.
Let $A=\{a, c\}$ and $B=\{b, c\}$. Then $\lambda_{\beta c} \operatorname{Int}(A)=\{a, c\}$ and $\lambda_{\beta c} \operatorname{Int}(B)=\{b, c\}$, but $\quad \lambda_{\beta c} \operatorname{Int}(A \cap B)=\lambda_{\beta c} \operatorname{Int}(\{c\})=\phi \neq\{a, c\} \cap\{b, c\}=\{c\} \quad$ where $\quad A \cap B=\{c\}$. Therefore $\lambda_{\beta c} \operatorname{Int}(A \cap B) \neq \lambda_{\beta c} \operatorname{Int}(A) \cap \lambda_{\beta c} \operatorname{Int}(A)$.

Remark 3.23

1) In Example 3.3 if we let $A=\{a, b\}$ and $B=\{b, c\}$ then $\lambda_{\beta c} \operatorname{Int}(A) \cap$

$$
\lambda_{\beta c} \operatorname{Int}(B)=\phi, \text { but } A \cap B=\{b\} \neq \phi
$$

2) In Example 3.3 if we let $A=\{b, c\}$ and $B=\{a\}$, then $\lambda_{\beta c} \operatorname{Int}(A)=\phi=\lambda_{\beta c} \operatorname{Int}(B)$.

But $A \neq B$.

Proposition 3.24

For a subset A of a topological space $(X, \tau), \lambda_{\beta c} \operatorname{Int}(A)=A \backslash \lambda_{\beta c} d(X \backslash A)$.
Proof. If $x \in A \backslash \lambda_{\beta c} d(X \backslash A)$ then $x \in A$ and $x \notin \lambda_{\beta c} D(X \backslash A)$ and so there exists a $\lambda_{\beta c}$-open set U containing x such that $U \cap X \backslash A=\phi$. Then $x \in U \subseteq A$, hence $x \in \lambda_{\beta c} \operatorname{Int}(A)$, this implies that $A \backslash \lambda_{\beta c} D(X \backslash A) \subseteq \lambda_{\beta c} \operatorname{Int}(A)$. On the other hand, if $x \in \lambda_{\beta c} \operatorname{Int}(A)$ then $x \notin \lambda_{\beta c} D(X \backslash A)$ since $\lambda_{\beta c} \operatorname{Int}(A)$ is $\lambda_{\beta c}$-open and $\lambda_{\beta c} \operatorname{Int}(A) \cap X \backslash A=\phi$. Hence $\lambda_{\beta c} \operatorname{Int}(A)=A \backslash \lambda_{\beta c} D(X \backslash A)$.

Proposition 3.25

For any subset A of a topological space (X, τ), The following statements are true.
(1) $X \backslash \lambda_{\beta c} \operatorname{Int}(A)=\lambda_{\beta c} C l(X \backslash A)$.
(2) $\lambda_{\beta c} C l(A)=X \backslash \lambda_{\beta c} \operatorname{Int}(X \backslash A)$.
(3) $X \backslash \lambda_{\beta c} C l(A)=\lambda_{\beta c} \operatorname{Int}(X \backslash A)$.
(4) $\lambda_{\beta c} \operatorname{Int}(A)=X \backslash \lambda_{\beta c} C l(X \backslash A)$.

Proof. (1) $X \backslash \lambda_{\beta c} \operatorname{Int}(A)=X \backslash\left(A \backslash \lambda_{\beta c} D(X \backslash A)\right)=(X \backslash A) ب \lambda_{\beta c} D(X \backslash A)$
$=\lambda_{\beta c} C l(X \backslash A)$.
(2) We have $X \backslash \lambda_{\beta c} \operatorname{Int}(A)=\lambda_{\beta c} C l(X \backslash A)$ by(1), replace A by $X \backslash A$ then $X \backslash \lambda_{\beta c} \operatorname{Int}(X \backslash A)=\lambda_{\beta c} C l(A)$.
(3) We have $X \backslash \lambda_{\beta c} \operatorname{Int}(X \backslash A)=\lambda_{\beta c} C l(A)$ by (2), complement both sides then $X \backslash \lambda_{\beta c} C l(A)=\lambda_{\beta c} \operatorname{Int}(X \backslash A)$.
(4) We have $X \backslash \lambda_{\beta c} C l(A)=\lambda_{\beta c} \operatorname{Int}(X \backslash A)$ by(3), replace A by $X \backslash A$ then $\lambda_{\beta c} \operatorname{Int}(A)=X \backslash \lambda_{\beta c} C l(X \backslash A)$.

Proposition 3.26

For a subset A of a topological space $(X, \tau), \lambda_{\beta c} \operatorname{Int}(A) \subseteq \lambda^{*} \operatorname{Int}(A)$.
Proof.Obvious.

The converse of Proposition 3.26, is not true in general, we can show by the following example:

Example 3.27

In Example 3.3 if we let $A=\{a, b\}$ then $\lambda_{\beta c} \operatorname{Int}(A)=\phi$ and $\lambda^{*} \operatorname{Int}(A)=$ $\{a, b\}$. Therefore $\lambda^{*} \operatorname{Int}(A) \nsubseteq \lambda_{\beta c} \operatorname{Int}(A)$.

Corollary 3.28

If A is a subset of a topological space (X, τ), then $\lambda_{\beta c} \operatorname{Int}(A) \subseteq \lambda^{*} \operatorname{Int}(A)$ $\subseteq A \subseteq \lambda^{*} C l(A) \subseteq \lambda_{\beta c} C l(A)$.

Proof. Obvious.

Theorem 3.29

Let A, B be subsets of X. If $\lambda: S O(X) \rightarrow P(X)$ is a λ-regular s-operation Then:
(1) $\lambda_{s c} d(A \cup B)=\lambda_{s c} d(A) \cup \lambda_{s c} d(B)$.
(2) $\lambda_{s c} C l(A \cup B)=\lambda_{s c} C l(A) \cup \lambda_{s c} C l(B)$.
(3) $\lambda_{s c} \operatorname{Int}(A \cap B)=\lambda_{s c} \operatorname{Int}(A) \cap \lambda_{s c} \operatorname{Int}(B)$.

Proof. (1) $\lambda_{s c} D(A) \cup \lambda_{s c} D(B) \subseteq \lambda_{s c} D(A \cup B)$ by Proposition 3.4. Let $x \in$ $\lambda_{s c} D(A \cup B)$, if $x \notin \lambda_{s c} D(A) \cup \lambda_{s c} D(B)$ then $x \notin \lambda_{s c} D(A)$ and $x \notin \lambda_{s c} D(B)$ then there exist $\lambda_{\beta c}$-open sets U and V contain x such that $(A \backslash\{x\}) \cap U \neq \phi$ and $(B \backslash\{x\}) \cap V \neq \phi$, then $((A \cup B) \backslash\{x\}) \cap(U \cap V)=\phi$, but λ is λ-regular then $U \cap V$ is $\lambda_{\beta c}$-open by Proposition 2.11, so $x \notin \lambda_{\beta c} D(A \cup B)$ a contradiction. Thus $\lambda_{\beta c} D(A) \cup \lambda_{\beta c} D(B) \subseteq \lambda_{\beta c} D(A \cup B)$. Hence we get $\lambda_{\beta c} D(A \cup B)=\lambda_{\beta c} D(A) \cup \lambda_{\beta c} D(B)$.
(2) $\lambda_{\beta c} C l(A \cup B)=(A \cup B) \cup \lambda_{\beta c} D(A \cup B)$ by Proposition 3.12(7). But
$\lambda_{\beta c} D(A \cup B)=\lambda_{\beta c} D(A) \cup \lambda_{\beta c} D(B)$ by (1), therefore $\lambda_{\beta c} C l(A \cup B)=$ $(A \cup B) \cup\left(\lambda_{\beta c} D(A) \cup \lambda_{\beta c} D(B)\right)$, this implies that $\lambda_{\beta c} C l(A \cup B)=$ $\left(\left(A \cup \lambda_{\beta c} D(A)\right) \cup\left(B \cup \lambda_{\beta c} D(B)\right)=\lambda_{\beta c} C l(A) \cup \lambda_{\beta c} C l(B)\right.$ by Proposition 3.12(7).
(3) $\lambda_{\beta c} \operatorname{Int}(A \cap B)=(A \cap B) \backslash \lambda_{\beta c} D(X \backslash(A \cap B))$ by Proposition 3.24. So
$\lambda_{\beta c} \operatorname{Int}(A \cap B)=(A \cap B) \backslash \lambda_{\beta c} D(X \backslash A \cup X \backslash B)$, but $\lambda_{\beta c} D(X \backslash A \cup X \backslash B)$
$=\lambda_{\beta c} D(X \backslash A) \cup \lambda_{\beta c} D(X \backslash B)$ by (1), this implies $\lambda_{\beta c} \operatorname{Int}(A \cap B)=$ $(A \cap B) \backslash\left(\lambda_{\beta c} D(X \backslash A) \cup \lambda_{\beta c} D(X \backslash B)\right)$. Therefore $\lambda_{\beta c} \operatorname{Int}(A \cap B)=$ $A \backslash \lambda_{\beta c} D(X \backslash A) \cup B \backslash \lambda_{\beta c} D(X \backslash B)=\lambda_{\beta c} \operatorname{Int}(A) \cap \lambda_{\beta c} \operatorname{Int}(B)$ by Proposition 3.24.

References

1. Levine, N., Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 1963. 70(1): p. 36-41.
2. El-Monsef, M.A., S. El-Deeb, and R. Mahmoud, β-open sets and β continuous mappings. Bull. Fac. Sci. Assiut Univ, 1983. 12(1): p. 77-90.
3. Alias B. Khalaf, S.F.N., Generalized λ-Closed Sets and $\llbracket(\lambda, \gamma) \rrbracket^{\wedge *}$ Continuous Functions. International Journal of Scientific \& Engineering Research, 2012. 3(12).
4. Alias B. Khalaf, S.F.N., Generalized λ-Closed Sets and $\llbracket(\lambda, \gamma) \rrbracket^{\wedge *}$ Continuous Functions. Journal of Garmian University 2017. Preprint.
5. F.Namiq, S., $\lambda^{\wedge *}-R_{-} 0$ and $\lambda^{\wedge *}-R_{-} 1$ Spaces. Journal of Garmyan University, 2014(3).
6. F.Namiq, S., New types of continuity and separation axiom based operation in topological spaces. 2011, Sulaimani.
7. Khalaf, A.B. and S.F. Namiq, [[lambda]. sub. c]-open sets and [[lambda]. sub. cJ-separation axioms in topological spaces. Journal of Advanced Studies in Topology, 2013. 4(1): p. 150-159.
8. Levine, N., Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 1970. 19(1): p. 89-96.

للهم تويّزَينهوويهدا چֶهمكى كَوْهلّلهيهكى كراوه لله جوّرى(
 .

> المخّض
> في هله البحث نقلم مفهوم المجموعات المقتوحة مز نوع(
الداخلية مز نوع (($\lambda_{\text {) }}$)

