On P -Weak Cancellation, P-Purely Cancellation and P-Weak Purely Cancellation Modules

Adil Kadir Jabbar' Dana Jamal Saeed
${ }^{1}$ Department of Mathematics, College of Science, University of Sulaimani, Sulaimani-Iraq

Abstract

In this paper, we introduce some new types of cancellation modules such as P-weak cancellation modules, P-purely cancellation modules and P-weak purely cancellation modules, where P is a prime ideal of a commutative ring R and M is an R-module. We try to give some equivalent conditions for each type and determine some relations between these types and some other types of modules such as weak cancellation modules, purely cancellation modules and weak purely cancellation modules.

Keywords: P-Weak cancellation modules, pure ideals, P - purely cancellation modules, P - weak purely cancellation modules, multiplicative systems and localization.

1. Introduction

In [9], Naoum, A. G. and Mijbas, A. S. studied cancellation and weak cancellation modules and they obtained some properties of them. Also, they studied the relations of weak cancellation modules with some other types of modules such as projective modules and flat modules and they gave some conditions under which projective modules and flat modules are weak cancellation modules. In [3], Bothainah, N. S., Hatam Y. Khalaf and Mahmood, L. S. purely and weakly purely cancellation modules and they constructed some equivalent conditions for each type. In [8], Mahmood, L. S., Bothainah N. S. and Tahir, S. Rashid studied relatively cancellation modules and they obtained some relations of this type of modules with cancellation modules. Also they studied the effect of localization and trace of modules on this type of modules.

In this paper, we define some new types of cancellation modules such as P-weak cancellation modules, P-purely cancellation modules and P-weak purely cancellation modules and we try to study the effect of localization on weak cancellation modules, purely cancellation modules and weak purely cancellation modules. Also we try to obtain some properties of them and find some equivalent conditions for these new types of cancellation modules.

Throughout this paper, R is a commutative ring with identity and M is a left R-module, unless otherwise stated. A nonempty subset S of R is called a multiplicatively closed set if $a, b \in S$ implies that $a b \in S$ and a multiplicatively closed set is called a multiplicatively system if $0 \notin S$ [7]. If S is a multiplicatively system in R, then we denote the localization of R at S by R_{S} (or $S^{-1} R$ [7]), which is $R_{S}=\left\{\frac{r}{s}: r \in R, s \in S\right\}[7]$. If P is a prime ideal of R, then one can easily get that $R \backslash P$ is a multiplicatively system in R and in this case, we denote the localization of R at $R \backslash P$ by R_{P}, so that $R_{P}=\left\{\frac{r}{p}: r \in R, p \notin\right.$ $P\}$. If A is an ideal of R, then $A_{S}=\left\{\frac{a}{s}: a \in A, s \in S\right\}$ and if P is a prime ideal of R, then $A_{P}=\left\{\frac{a}{p}: a \in\right.$ $A, p \notin P\}$. If N is a submodule of M, then $S_{M}(N)=\{r \in R: r x \in N$, for some $x \in M \backslash N\}[2]$ and if A is an ideal of R, then $S_{R}(A)=\{r \in R: r a \in A$, for some $a \notin A\}[4]$. For a submodule K of $M,(K: M)=\{r \in$ $R: r M \subseteq K\}$ and $\operatorname{ann}(M)=(0: M)=\{r \in R: r M=0\}$. An ideal A of R is called a pure ideal of R if $A \cap B=A B$ for every ideal B of R [3], equivalently A is a pure ideal of R if and only if $A a=R a$ for all $a \in A[1]$ and A is called a purely cancellation ideal if B is a pure ideal of R and C is any ideal of R such
that $B A=C A$, then $B=C$ [3]. M is called a cancellation (weak cancellation) module if A and B are ideals of R such that $A M=B M$ implies $A=B(A+\operatorname{ann}(M)=B+\operatorname{ann}(M))$ [9] and also M is called purely (weak purely) cancellation module if A is a pure ideal of R and B is an ideal o R such that $A M=B M$, then $A=B(A+\operatorname{ann}(M)=B+\operatorname{ann}(M))$ [3]. M is called relatively (weak relatively) cancellation module if A is a prime ideal of R and B is an ideal o R such that $A M=B M$, then $A=B(A+\operatorname{ann}(M)=B+$ $\operatorname{ann}(M)$) [8]. The Jacobson radical of M, denoted by $J(M)$, is defined as $J(M)=\bigcap_{K} K$ is a maximal submodule of M and if R is considered as R-module then the Jacobson radical of R, denoted by $J(R)$, is defined by $J(R)=\bigcap_{P} P$ is a maximal ideal of $R[10]$.

2. P - Weak Cancellation Modules

First, we prove that the localization of the annihilator of an R-module is the same as the annihilator of the localization of the module.
Proposition 2.1. Let M be an R - module and P a prime ideal of R such that $S_{M}(0) \subseteq P$, then $(\operatorname{ann}(M))_{P}=\operatorname{ann}\left(M_{P}\right)$.
Proof. Let $\frac{r}{p} \in(\operatorname{ann}(M))_{P}$, for $r \in R$ and $p \notin P$. Then $q r \in \operatorname{ann}(M)$, for some $q \notin P$, which gives $q r M=0$. Now let $\frac{x}{t} \in M_{P}$, where $x \in M, t \notin P$. We have $\frac{r}{p} \frac{x}{t}=\frac{q}{q} \frac{r}{p} \frac{x}{t}=\frac{q r x}{q p t}=0$, so that $\frac{r}{p} \in \operatorname{ann}\left(M_{P}\right)$, so that $(\operatorname{ann}(M))_{P} \subseteq \operatorname{ann}\left(M_{P}\right)$. Next, let $\frac{r}{p} \in \operatorname{ann}\left(M_{P}\right)$, for $r \in R$ and $p \notin P$, so that $\frac{r}{p} M_{P}=0$, then by [5, Corollary 2.9], we get $(r M)_{P}=\frac{r}{p} M_{P}=0$. If $x \in M$, then $\frac{r x}{1}=0$, this gives $\operatorname{tr} x=0$ for some $t \notin P$. Now, if $r x \neq 0$, then $t \in S_{M_{r}}(0) \subseteq P$, which is a contradiction, so that $r x=0$, that is $r M=0$, which means $r \in \operatorname{ann}(M)$, so that $\frac{r}{p} \in(\operatorname{ann}(M))_{P}$, thus we get $\operatorname{ann}\left(M_{P}\right) \subseteq(\operatorname{ann}(M))_{P}$. Hence $(\operatorname{ann}(M))_{P}=$ $\operatorname{ann}\left(M_{P}\right)$.

Now, we introduce the definitions of P-cancellation and P-weak cancellation modules.
Definition 2.2. Let M be an R - module and P be a prime ideal of R. We call M a P - cancellation (P-weak cancellation) module if M_{P} is a cancellation (weak cancellation) module.

In the following we give an example of a R - module M in which $S \cap S_{M}(N)=\emptyset$, for each multiplicative system S in R, also it shows that for some prime ideal P of R, we have $S_{M}(N) \subseteq P$, for every submodule N of M.
Example 2.3. Consider the Z_{27} as Z_{27}-module. The submodules of Z_{27} are $<\overline{0}>,<\overline{3}>,<\overline{9}>$ and Z_{27}. Now, it is easy to check that:
$S_{Z_{27}}(<\overline{0}>)=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}, \overline{18}, \overline{21}, \overline{24}\}$.
$S_{Z_{27}}(<\overline{3}>)=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}, \overline{18}, \overline{21}, \overline{24}\}$.
$S_{Z_{27}}(<\overline{9}>)=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}, \overline{18}, \overline{21}, \overline{24}\}$.
$S_{Z_{27}}\left(Z_{27}\right)=\emptyset$.
Next, if S is any multiplicative system in Z_{27}, then S does not contain any multiple of $\overline{3}$, since if $s=\overline{3} \bar{x} \in$ S, then we get $0=s^{3} \in S$, which is a contradiction, so that we get $S \subseteq\{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}, \overline{10}, \overline{11}, \overline{13}, \overline{14}, \overline{16}, \overline{17}, \overline{19}, \overline{20}, \overline{22}, \overline{23}, \overline{25}, \overline{26}\}$.

Clearly
we have $S \cap S_{Z_{27}}(<\overline{0}>)=\emptyset=S \cap S_{Z_{27}}(<\overline{3}>)=S \cap S_{Z_{27}}(<\overline{9}>)=S \cap S_{Z_{27}}\left(Z_{27}\right)$.
That means, $\cap S_{Z_{27}}(N)=\emptyset$, for every multiplicative system S in Z_{27} and for every submodule N of Z_{27}.
On the other hand we have $P=\{\overline{0}, \overline{3}, \overline{6}, \overline{9}, \overline{12}, \overline{15}, \overline{18}, \overline{21}, \overline{24}\}$ is a prime ideal of Z_{27} and clearly we have $S_{Z_{27}}(N)=P \subseteq P$, for every submodule $N \neq Z_{27}$ and $S_{Z_{27}}\left(Z_{27}\right)=\emptyset \subseteq P$, that is we have $S_{Z_{27}}(N) \subseteq P$, for every submodule N of Z_{27}.
Remark 2.4. Let R be a commutative ring with identity and S is a multiplicative system in R such that $S \cap S_{R}(I)=\emptyset$, for every ideal I of R, then it is easy to prove that:
(1) If A is a pure ideal of R, then A_{S} is a pure ideal of R_{S}.
(2) If \bar{A} is a pure ideal of R_{S}, then there exists a unique pure ideal A of R with $\bar{A}=A_{S}$.

If P is a prime ideal of R, then $S=R \backslash P$ is a multiplicative system in R. In view of this the above remark becomes as follows:
Let R be a commutative ring with identity and P is a prime ideal of R such that $S_{R}(I) \subseteq P$, for every ideal I of R, then we have:
(1) If A is a pure ideal of R, then A_{P} is a pure ideal of R_{P}.
(2) If \bar{A} is a pure ideal of R_{P}, then there exists a unique pure ideal A of R with $\bar{A}=A_{P}$.

It is known that, if M is a cancellation R-module and A is an ideal of R, then $A M$ is a purely cancellation module if and only if A is a purely cancellation ideal of R [3, Proposition 2.10].
Proposition 2.5. Let M be an R - module and P be a prime ideal of R such that $S_{M}(K) \subseteq P$ for every submodule K of M. If N is a purely cancellation submodule of M, then N_{P} is a purely cancellation submodule of M_{P}.
Proof. To show N_{P} is a purely cancellation submodule of M_{P}. Let $\bar{A} N_{P}=\bar{B} N_{P}$, where \bar{A} is a pure ideal of R_{P} and \bar{B} is any ideal of R_{P}. Then by Remark $2.4, \bar{A}=A_{P}$, where A is a pure ideal of R and $\bar{B}=B_{P}$, where B is an ideal of R. Then we get $(A N)_{P}=A_{P} N_{P}=\bar{A} N_{P}=\bar{B} N_{P}=B_{P} N_{P}=(B N)_{P}$. As $S_{M}(A N) \subseteq P$ and $S_{M}(B N) \subseteq P$, we get $A N=B N$ and as N is a purely cancellation module, we get $A=B$ and thus $\bar{A}=A_{P}=B_{P}=\bar{B}$. Hence N_{P} is a purely cancellation submodule of M_{P}.

In the next result we show that under certain condition the localization of a purely cancellation ideal of a ring is also purely cancellation.
Proposition 2.6. Let R be a commutative ring with identity and P be a prime ideal of R such that $S_{R}(I) \subseteq$ P for every ideal I of R. If A is a purely cancellation ideal of R, then A_{P} is a purely cancellation ideal of R_{P}.
Proof. To show A_{P} is a purely cancellation ideal of R_{P}. Let $\bar{B} A_{P}=\bar{C} A_{P}$, where \bar{B} is a pure ideal of R_{P} and \bar{C} is any ideal of R_{P}. Then by Remark 2.4, $\bar{B}=B_{P}$, where B is a pure ideal of R and $\bar{C}=C_{P}$, where C is an ideal of R. Then we get $(B A)_{P}=B_{P} A_{P}=\bar{B} A_{P}=\bar{C} A_{P}=C_{P} A_{P}=(C A)_{P}$. As $S_{M}(B A) \subseteq P$ and $S_{M}(C A) \subseteq P$, we get $B A=C A$ and as A is a purely cancellation ideal, we get $B=C$ and thus $\bar{B}=B_{P}=$ $C_{P}=\bar{C}$. Hence A_{P} is a purely cancellation ideal of R_{P}.

Next, we extend a property of cancellation modules to P-cancellation modules.
Proposition 2.7. Let M be an R - module and P be a prime ideal of R such that $S_{M}(K) \subseteq P$ for every submodule K of M and $S_{R}(I) \subseteq P$ for every ideal I of R and let A be an ideal of R. If M is a P-cancellation module, then $A M$ is a purely cancellation module if and only if A is a purely cancellation ideal.
Proof. (\Rightarrow) Since M is a P - cancellation module, so M_{P} is a cancellation module. Let $A M$ be a purely cancellation module, then by Proposition 2.6, we get $(A M)_{P}=A_{P} M_{P}$ is a purely cancellation module, so that by [3, Proposition 1.10], A_{P} is a purely cancellation ideal of R_{P}. To show A is a purely cancellation ideal of R. Let B be a pure ideal of R and C is an ideal of R such that $B A=C A$, then we get $B_{P} A_{P}=$ $(B A)_{P}=(C A)_{P}=C_{P} A_{P}$. Now, by Remark 2.4, we get B_{P} is a pure ideal of R_{P} and as A_{P} is an ideal of R_{P} and M_{P} is a cancellation module, we get $B_{P}=C_{P}$ and since $S_{R}(B) \subseteq P$ and $S_{R}(C) \subseteq P$, we get $B=C$. Hence A is a purely cancellation ideal of R.
(\Leftarrow) Let A be a purely cancellation ideal of R, so by Proposition 2.6, we get A_{P} is a purely cancellation ideal of R_{P} and as M_{P} is a cancellation module by [3, Proposition 1.10], we have $A_{P} M_{P}$ is a purely cancellation module. To show $A M$ is a purely cancellation module, so let $B A M=C A M$, where B is a pure ideal of R and C is an ideal of R, then B_{P} is a pure ideal of R_{P} and C_{P} is an ideal of R_{P}. Now, we have $B_{P} A_{P} M_{P}=(B A M)_{P}=(C A M)_{P}=C_{P} A_{P} M_{P}$ and as $A_{P} M_{P}$ is a purely cancellation module, so we get $B_{P}=C_{P}$. As $S_{R}(B) \subseteq P$ and $S_{R}(C) \subseteq P$, we get $B=C$. Hence $A M$ is a purely cancellation module.

Next, we prove the following result which will be used to prove some other results.
Lemma 2.8. Let M be an R-module. If A, B are ideals of R and N a submodule of M, then
(1) $S_{M}(N: M) \subseteq S_{M}(N)$.
(2) $S_{R}(A: B) \subseteq S_{R}(A)$.

Proof. (1) Let $r \in S_{M}(N: M)$, then $r x \in(N: M)$ for some $x \notin(N: M)$, this implies that $r x M \subseteq N$ and $x M \nsubseteq N$, so there exists $m \in M$ for which $x m \notin N$ but then $r x m \in N$. Hence $r \in S_{M}(N)$, thus $S_{M}(N: M) \subseteq S_{M}(N)$.
(2) Let $r \in S_{R}(A: B)$, then $r x \in(A: B)$ for some $x \notin(A: B)$, this implies that $r x B \subseteq A$ and $x B \nsubseteq A$, so there exists $m \in B$ for which $x m \notin A$ but then $r x m \in A$. Hence $r \in S_{R}(A)$, thus $S_{R}(A: B) \subseteq S_{R}(A)$.

Next, we give some equivalent conditions for an R-module to be a P-weak cancellation module.
Proposition 2.9. If M is an R-module and P is a prime ideal of R. If $S_{M}(I+\operatorname{ann}(M)) \subseteq P$ and $S_{M}(I M) \subseteq P$, for every ideal I of R, then the following conditions are equivalent:
(1) M is a P-weak cancellation module.
(2) For ideals A, B of $R, A M \subseteq B M$ implies $A \subseteq B+\operatorname{ann}(M)$.
(3) If for $a \in R$ and ideal B of $R,(a) M \subseteq B M$ implies that $a \in B+\operatorname{ann}(M)$.
(4) $(A M: M)=A+\operatorname{ann}(M)$ for every ideal A of R.
(5) $(A+\operatorname{ann}(M): B)=(A M: B M)$ for any two ideals A and B of R.

Proof. (1) $\Rightarrow(2)$. Let M_{P} be a weak cancellation module and A, B are ideals of R such that $A M \subseteq B M$. Then A_{P} and B_{P} are ideals of R_{P} and $A_{P} M_{P}=(A M)_{P} \subseteq(B M)_{P}=B_{P} M_{P}$. As M_{P} is weak cancellation, by [9, Proposition 1.4], we get $A_{P} \subseteq B_{P}+\operatorname{ann}\left(M_{P}\right)$ and as $S_{M}(0)=S_{M}(0 M) \subseteq P$, by Proposition 2.1, we get $A_{P} \subseteq B_{P}+\operatorname{ann}\left(M_{P}\right)=(B+\operatorname{ann}(M))_{P}$. Let $a \in A$, then $\frac{a}{1}=\frac{b+s}{p}$, for some $b \in B, s \in \operatorname{ann}(M)$ and $p \notin P$. Then $q p a=q b+q s \in B+\operatorname{ann}(M)$, for some $q \notin P$. If $a \notin B+a n n(M)$, then $q p \in S_{M}(B+$ $\operatorname{ann}(M)) \subseteq P$, this gives $q \in P$ or $p \in P$, which is a contradiction, so that $a \in B+\operatorname{ann}(M)$. Hence $A \subseteq B+\operatorname{ann}(M)$.
(2) $\Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$. The proof follows directly by [9, Proposition 1.4].
(5) \Rightarrow (1). Let \bar{A} and \bar{B} be ideals of R_{P}, then there exist ideals A and B of R such that $\bar{A}=A_{P}$ and $\bar{B}=B_{P}$. So that by the given condition we have $(A+\operatorname{ann}(M): B)=(A M: B M)$, which gives that $(A+$ $\operatorname{ann}(M): B)_{P}=(A M: B M)_{P}$ and since we have $S_{R}(A+\operatorname{ann}(M): B) \subseteq S_{R}(A+\operatorname{ann}(M)) \subseteq P$ and $S_{M}(A M: B M) \subseteq S_{M}(A M) \subseteq P \quad$ and $\quad S_{M}(0)=S_{M}(0 M) \subseteq P \quad$, so we get $\quad\left(A_{P}+\operatorname{ann}\left(M_{P}\right): B_{P}\right)=$ $\left(A_{P} M_{P}: B_{P} M_{P}\right)$, that is $\left(\bar{A}+\operatorname{ann}\left(M_{P}\right): \bar{B}\right)=\left(\bar{A} M_{P}: \bar{B} M_{P}\right)$, so by [9, Proposition 1.4], we get M_{P} is a weak cancellation module that means M is a P - weak cancellation module.

By combining Proposition 2.9 and [9, Proposition 1.4], we get the following theorem.
Theorem 2.10. If M is an R-module and P is a prime ideal of R. If $S_{M}(I+\operatorname{ann}(M)) \subseteq P$ and $S_{M}(I M) \subseteq$ P, for every ideal I of R, then the following conditions are equivalent:
(1) M is a weak cancellation module.
(2) M is a P-weak cancellation module.
(3) For ideals A, B of $R, A M \subseteq B M$ implies $A \subseteq B+\operatorname{ann}(M)$.
(4) If for $a \in R$ and ideal B of R, (a) $M \subseteq B M$ implies that $a \in B+\operatorname{ann}(M)$.
(5) $(A M: M)=A+\operatorname{ann}(M)$ for every ideal A of R.
(6) $(A+\operatorname{ann}(M): B)=(A M: B M)$ for any two ideals A and B of R.

It is known that, if an R-module M is a cancellation module then $M_{P} \neq 0$ for each maximal ideal P of R [9, Proposition 2.1]. Here we show that under certain condition this property is also true for every R-module M.
Proposition 2.11. Let M be an R - module and P is a maximal ideal of R such that $S_{M}(0) \subseteq P$, then $M_{P} \neq 0$.
Proof. If possible suppose that $M_{P}=0$, then for any $m \in M$, we have $\frac{m}{1}=0$, this implies $q m=0$ for some $q \notin P$. If $m \neq 0$, then $q \in S_{M}(0) \subseteq P$, that is a contradiction, so that $m=0$ which gives that $M=0$ which is again a contradiction. Hence $M_{P} \neq 0$.

3. P-purely cancellation modules.

We introduce the following definition.
Definition 3.1. Let M be an R - module and P be a prime ideal of R. We call M a P - purely cancellation module if M_{P} is a purely cancellation module.

Now, we give some equivalent conditions for an R-module to be a P-purely cancellation module.
Proposition 3.2. Let M be an R - module and P be a prime ideal of R such that $S_{R}(I) \subseteq P$ and $S_{M}(N) \subseteq$ P, for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a P-purely cancellation module.
(2) If $A M \subseteq B M$, where A is any ideal of R and B is a pure ideal of R, then $A \subseteq B$.
(3) If $(a) M \subseteq B M$, where $a \in R$ and B is a pure ideal of R, then $a \in B$.
(4) $(A M: M)=A$ for all pure ideals A of R.
(5) $(A M: B M)=(A: B)$ for all ideals B of R and for all pure ideals A of R.

Proof. (1) $\Rightarrow(2)$. Let M be a P-purely cancellation module and let $A M \subseteq B M$, where A is any ideal of R and B is a pure ideal of R. To show $A \subseteq B$. We have M_{P} is a purely cancellation module. Then A_{P} is an
ideal of R_{P} and as B is pure, by Remark 242, we get B_{P} is a pure ideal of R_{P} and also we have $A_{P} M_{P}=$ $(A M)_{P} \subseteq(B M)_{P}=B_{P} M_{P}$, so by [3, Theorem 1.5], we get $A_{P} \subseteq B_{P}$. As $S_{R}(B) \subseteq P$, we get $A \subseteq B$.
$(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$. The proof follows directly by [3, Theorem 1.5$]$.
(5) \Rightarrow (1). Suppose that the condition (2) is satisfied. To show M is a P-purely cancellation module it is enough to show that M_{P} is a purely cancellation module. Let \bar{A} be any pure ideal of R_{P} and \bar{B} be any ideal of R_{P}, then by Remark 2.4, there exists a unique pure ideal A of R such that $\bar{A}=A_{P}$ and also there exists an ideal B of R such that $\bar{B}=B_{P}$. Now, by the given condition (2), we get $(A M: B M)=(A: B)$. As $S_{M}(A M) \subseteq P$, so that we get $\left(\bar{A} M_{P}: \bar{B} M_{P}\right)=\left(A_{P} M_{P}: B_{P} M_{P}\right)=(A M: B M)_{P}=(A: B)_{P}=\left(A_{P}: B_{P}\right)=$ $(\bar{A}: \bar{B})$. Hence by [2, Theorem 1.5], we get M_{P} is a purely cancellation module, so that M is a P-purely cancellation module.

By combining Proposition 3.2 and [3, Theorem 1.5], we get the following theorem.
The orem 3.3. Let M be an R-module and P be a prime ideal of R such that $S_{R}(I) \subseteq P$ and $S_{M}(N) \subseteq P$, for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a purely cancellation module.
(2) M is a P-purely cancellation module.
(3) If $A M \subseteq B M$, where A is any ideal of R and B is a pure ideal of R, then $A \subseteq B$.
(4) If (a) $M \subseteq B M$, where $a \in R$ and B is a pure ideal of R, then $a \in B$.
(5) $(A M: M)=A$ for all pure ideals A of R.
(6) $(A M: B M)=(A: B)$ for all ideals B of R and for all pure ideals A of R.

4. P-Weak Purely Cancellation Modules

Now we introduce the following definition.
Definition 4.1. Let M be an R-module and P is a prime ideal of R. We call M a P - weak purely cancellation module if M_{P} is a weak cancellation module.
The orem 4.2. Let M be an R-module and P be a prime ideal of R such that $S_{R}(I) \subseteq P$ and $S_{M}(N) \subseteq P$, for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a P-weak purely cancellation module.
(2) If A is an ideal of R and B is a pure ideal of R, then $A M \subseteq B M$ implies $A \subseteq B+\operatorname{ann}(M)$.
(3) If $a \in R$ and B is a pure ideal of R, then (a) $M \subseteq B M$ implies $a \in B+a n n(M)$.
(4) $(A M: M)=A+\operatorname{ann}(M)$, for all pure ideals A of R.
(5) $(A M: B M)=(A+\operatorname{ann}(M): M)$, where A is a pure ideal of R and B is any ideal of R.

Proof. The proof follows by using the same technique as we have used in Proposition 3.2.

5. P - Weak Relatively Cancellation Modules

We introduce the following definition.
Definition 5.1. Let M be an R-module and P is a prime ideal of R. We call M a P-relatively (P-weak relatively) cancellation module if M_{P} is a relatively (weak relatively) cancellation module.

It is known that, if P is a prime ideal of R, then R_{P} is a local ring with P_{P} as its unique maximal ideal and also we have $S_{R}(P)=P$ [7]. Now, by using this fact we prove the following result.
Proposition 5.2. Let M be an R-module and P is a prime ideal of R, such that $S_{R}(J(R)) \subseteq P$ and $S_{M}(0) \subseteq P$. If M is a P-relatively cancellation module, then $\operatorname{ann}(M) \subseteq P$.
Proof. Since M is a P-relatively cancellation module, so that M_{P} is re latively cancellation module, so by [8, Corollary 3.3], we get ann $\left(M_{P}\right) \subseteq J\left(R_{P}\right)$. Since $S_{M}(0) \subseteq P$, so we have $(\operatorname{ann}(M))_{P}=\operatorname{ann}\left(M_{P}\right)$, and as P_{P} is the unique maximal ideal of R_{P}, we have $J\left(R_{P}\right)=P_{P}$, so that we get $(\operatorname{ann}(M))_{P} \subseteq P_{P}$. Now, let $x \in \operatorname{ann}(M)$, then $\frac{x}{1} \in P_{P}$, so that $p x \in P$, for some $p \notin P$ and as P is a prime ideal, we get $x \in P$, which gives $S_{R}(P) \subseteq P$, so that $\operatorname{ann}(M) \subseteq P$.

The following result proves that under certain conditions the localization of a maximal submodule of an R-module is also maximal.
Proposition 5.3. Let M be an R-module and S is a multiplicatively system in R. If K is a maximal submodule of M such that $S \cap S_{M}(K)=\varnothing$, then K_{S} is a maximal submodule of M_{S}. Furthermore, if P is a prime ideal of R, then K_{P} is a maximal submodule of M_{P}.

Proof. Let $K_{S}=M_{S}$ and $s \in S$, then for each $m \in M$, we have $\frac{m}{s} \in K_{S}$, this gives that $t m \in K$, for some $t \in S$. If $m \notin K$, then we get $t \in S_{M}(K)$, thus we get $S \cap S_{M}(K) \stackrel{s}{\neq \emptyset} \emptyset$, that is a contradiction, so that K_{S} is a proper ideal of M_{S}. Now, let $K_{S} \subseteq \bar{L} \subseteq M_{S}$, where \bar{L} is a submodule of M_{S}. Then $\bar{L}=L_{S}$ for some submodule L of M with $S \cap S_{M}(L)=\emptyset$, so that $K_{S} \subseteq L_{S} \subseteq M_{S}$, and as $S \cap S_{M}(L)=\emptyset$, we get $K \subseteq L \subseteq M$, this gives $K_{S}=L_{S}$ or $L_{S}=M_{S}$, that is $K_{S}=\bar{L}$ or $\bar{L}=M_{S}$. Hence K_{S} is a maximal submodule of M_{S}. For the proof of the second part, as $S=R \backslash P$ is a multiplicatively system in R, so by taking $S=R \backslash P$ in the proof of the first part we get the result at once.

Next we prove that, for an R-module M and a multiplicative system S, each maximal submodule of M_{S} is a localization of a unique maximal submodule of M.
Proposition 5.4. Let M be an R-module and S is a multiplicatively system in R. If \bar{K} is a maximal submodule of M_{S}, then there exists a maximal submodule K of S with $\bar{K}=K_{S}$ and $S \cap S_{M}(K)=\emptyset$. Furthermore, if P is a prime ideal of R, then there exists a maximal submodule K of S with $\bar{K}=K_{P}$ and $S_{M}(K) \subseteq P$.
Proof. As \bar{K} is a submodule of M_{S}, we get $\bar{K}=K_{S}$, for some submodule K of M with $S \cap S_{M}(K)=\emptyset$. It remains to show that K is a maximal submodule of M. Let $K \subseteq L \subseteq M$, where L is any submodule of M. If $K=M$, then we get $K_{S}=M_{S}$, this contradicts the fact that K_{S} is a maximal submodule of M_{S}, so that $K \neq M$, that is K is a proper submodule of M. Also we have $K_{S} \subseteq L_{S} \subseteq M_{S}$ and since K_{S} is a maximal submodule of M_{S}, we get $K_{S}=L_{S}$ or $L_{S}=M_{S}$. Now, if $K_{S}=L_{S}$, then as $S \cap S_{M}(K)=\emptyset$, we get $L \subseteq K$ and hence $K=L$ and if $L_{S}=M_{S}$, then as $L=K$, we get $S_{M}(L)=S_{M}(K)=\emptyset$, so that $S \cap S_{M}(L)=S \cap S_{M}(K)=$ \emptyset. Let $s \in S$ (this is possible since $S \neq \emptyset$). Now for any $m \in M$, we have $\frac{m}{s} \in L_{S}$, so we get $t m \in L$, for some $t \in S$ and if $m \notin L$, we get $t \in S_{M}(L)$, this gives that $S \cap S_{M}(L) \neq \emptyset$, that is a contradiction, so that we must have $m \in L$, this gives $L=M$. Hence K is a maximal submodule of M. The proof of the second part follows directly by putting $S=R \backslash P$ in the proof of the first part.

By combining Proposition 5.3 and Proposition 5.4 we get the following theore m which provides a one to one correspondence between the maximal submodules N of M that does not intersect $S_{M}(N)$ and the maximal submodules of M_{S}.
Theorem 5.5. Let M be an R-module and S is a multiplicatively system in R, then there is a one to one correspondence between the maximal submodules of M_{S} and the maximal submodules N of M for which $S \cap S_{M}(N)=\emptyset$. Furthermore, if P is a prime ideal of R, then there is a one to one correspondence between the maximal submodules of M_{P} and the maximal submodules N of M for which $S_{M}(N) \subseteq P$.
Proof. Let $\Gamma=\left\{\bar{N}: \bar{N}\right.$ is a maximal submodule of $\left.M_{S}\right\}$ and $\Psi=\{N: N$ is a maximal submodule of M for which $\left.S \cap S_{M}(N)=\emptyset\right\}$. We define $f: \Psi \rightarrow \Gamma$ as follows: let $N \in \Psi$, so that N is a maximal submodule of M with $S \cap S_{M}(N)=\emptyset$, then by Proposition 5.3, we get N_{S} is a maximal submodule of M_{S}, so that $N_{S} \in \Gamma$ and we define $f(N)=N_{S}$. By using Proposition 5.3 and Proposition 5.4 one can easily prove that f is a bijective mapping so that f defines a one to one correspondence between Ψ and Γ. The proof of the second part follows directly by taking $S=R \backslash P$ as a multiplicative system.

By using the Proposition 5.4, we are able to prove the following result.
Proposition 5.6. Let M be an R-module and P is a prime ideal of R, then $(J(M))_{P} \subseteq J\left(M_{P}\right)$.
Proof. Let $\frac{m}{p} \in(J(M))_{P}$, where $m \in M, p \notin P$. Then $q m \in J(M)$, for some $q \notin P$. Now, let \bar{N} be a maximal submodule of M_{P}, so by Proposition 5.4, there exists a maximal submodule N of S such that $\bar{N}=N_{S}$ and $S \cap S_{M}(N)=\emptyset$, then we get $q m \in N$. If $m \notin N$, then $q \in S_{M}(N)$, thus we get $S \cap S_{M}(N) \neq \emptyset$, that is a contradiction, so we get $m \in N$ and thus $\frac{m}{p} \in N_{S}=\bar{N}$. Hence $\frac{m}{p} \in J\left(M_{P}\right)$, so that $(J(M))_{P} \subseteq$ $J\left(M_{P}\right)$.

In the following result we give some equivalent conditions for an $R-$ module to be a P - relatively cancellation module.
Theorem 5.7. Let M be an R-module and P be a prime ideal of R such that $S_{R}(I) \subseteq P$ and $S_{M}(N) \subseteq P$, for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a P-relatively cancellation module.
(2) If A is an ideal of R and B is a prime ideal of R, then $A M \subseteq B M$ implies that $A \subseteq B$.
(3) If $a \in R$ and B is a prime ideal of R, then $(a) M \subseteq B M$ implies $a \in B$.
(4) $(A M: M)=A$, for all prime ideals A of R.
(5) $(A M: B M)=(A: B)$, where A is a prime ideal of R and B is any ideal of R.

Proof. (1) \Rightarrow (2). Suppose that M is a P-relatively cancellation module and $A M \subseteq B M$, where A is an ideal of R and B is a prime ideal of R. Then we have M_{P} is a relatively cancellation module and A_{P} is an ideal of R_{P} and as $S_{R}(B) \subseteq P$, we get B_{P} is a prime ideal of R_{P}, so by [8, Theorem 2.5], we have $A_{P} \subseteq B_{P}$ and as $S_{M}(0) \subseteq P$, we get $A \subseteq B$.
(2) $\Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$. The proof follows directly by [8, Theorem 2.5].
$(5) \Rightarrow(1)$. Suppose that the condition (5) holds. To show M is a P-relatively cancellation module it is enough to show that M_{P} is a relatively cancellation module. Let \bar{A} be any prime ideal of R_{P} and \bar{B} be any ideal of R_{P}, then there exists a prime ideal A of R and an ideal B of R with $\bar{A}=A_{P}$ and $\bar{B}=B_{P}$. Then by the given condition we have $(A M: B M)=(A: B)$, then we have $\left(\bar{A} M_{P}: \bar{B} M_{P}\right)=\left(A_{P} M_{P}: B_{P} M_{P}\right)=$ $(A M: B M)_{P}=(A: B)_{P}=\left(A_{P}: B_{P}\right)=(\bar{A}: \bar{B})$, so by [8, Theorem 6.6], we get M_{P} is a relatively cancellation module and thus M is a P-relatively cancellation module.

By combining Theorem 5.7 and [8, Theorem 2.5], we get the following theorem.
Theorem 5.8. Let M be an R-module and P be a prime ideal of R such that $S_{R}(I) \subseteq P$ and $S_{M}(N) \subseteq P$, for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a relatively cancellation module.
(2) M is a P-relatively cancellation module.
(3) If A is an ideal of R and B is a prime ideal of R, then $A M \subseteq B M$ implies that $A \subseteq B$.
(4) If $a \in R$ and B is a prime ideal of R, then $(a) M \subseteq B M$ implies $a \in B$.
(5) $(A M: M)=A$, for all prime ideals A of R.
(6) $(A M: B M)=(A: B)$, where A is a prime ideal of R and B is any ideal of R.

Next we give some equivalent conditions for an R-module to be a P-weak relatively cancellation module.
Theorem 5.9. Let M be an R-module and P be a prime ideal of R such that $S_{R}(I) \subseteq P$ and
$S_{M}(N) \subseteq P$, for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a P-weak relatively cancellation module.
(2) If A is an ideal of R and B is a prime ideal of R, then $A M \subseteq B M$ implies that $A \subseteq B+\operatorname{ann}(M)$.
(3) If $a \in R$ and B is a prime ideal of R, then $(a) M \subseteq B M$ implies $a \in B+\operatorname{ann}(M)$.
(4) $(A M: M)=A+\operatorname{ann}(M)$, for all prime ideals A of R.
(5) $(A M: B M)=(A+\operatorname{ann}(M): M)$, where A is a prime ideal of R and B is any ideal of R.

Proof. (1) \Rightarrow (2). Suppose that M is a P-weak relatively cancellation module and $A M \subseteq B M$, where A is an ideal of R and B is a prime ideal of R. Then we have M_{P} is a weak relatively cancellation module and A_{P} is an ideal of R_{P} and as $S_{R}(B) \subseteq P$, we get B_{P} is a prime ideal of R_{P}, so by [8, The orem 6.6], we have $A_{P} \subseteq B_{P}+\operatorname{ann}\left(M_{P}\right)$ and as $S_{M}(0) \subseteq P$, we get $(\operatorname{ann}(M))_{P}=\operatorname{ann}\left(M_{P}\right)$, so we get $A_{P} \subseteq(B+\operatorname{ann}(M))_{P}$ and as $S_{R}(B+\operatorname{ann}(M)) \subseteq P$, we get $A \subseteq B+\operatorname{ann}(M)$.
$(2) \Rightarrow(3) \Rightarrow(4) \Rightarrow(5)$. The proof follows directly by [8, Theorem 6.6].
$(5) \Rightarrow(1)$. Suppose that the condition (2) holds. To show M is a P-weak relatively cancellation module it is enough to show that M_{P} is weak relatively cancellation module. Let \bar{A} be any prime ideal of R_{P} and \bar{B} be any ideal of R_{P}, then there exists a prime ideal A of R and an ideal B of R with $\bar{A}=A_{P}$ and $\bar{B}=B_{P}$. Then by the given condition we have $(A M: B M)=(A+\operatorname{ann}(M): M)$, then we have $\left(\bar{A} M_{P}: \bar{B} M_{P}\right)=$ $\left(A_{P} M_{P}: B_{P} M_{P}\right)=(A M: B M)_{P}=(A+\operatorname{ann}(M): M)_{P}=\left(A_{P}+\operatorname{ann}\left(M_{P}\right): M_{P}\right)=\left(\bar{A}+\operatorname{ann}\left(M_{P}\right): M_{P}\right)$, so by [8, Theorem 6.6], we get M_{P} is a weak relatively cancellation module and thus M is a P - weak relatively cancellation module.

By combining Theorem 5.9 and [8, Theorem 6.6], we get the following theorem.
Theorem 5.10. Let M be an R-module and P be a prime ideal of R such that $S_{R}(I) \subseteq P$ and $S_{M}(N) \subseteq P$, for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a weak relatively cancellation module.
(2) M is a P-weak relatively cancellation module.
(3) If A is an ideal of R and B is a prime ideal of R, then $A M \subseteq B M$ implies that $A \subseteq B+\operatorname{ann}(M)$.
(4) If $a \in R$ and B is a prime ideal of R, then $(a) M \subseteq B M$ implies $a \in B+\operatorname{ann}(M)$.
(5) $(A M: M)=A+\operatorname{ann}(M)$, for all ideals A of R.
(6) $(A M: B M)=(A+\operatorname{ann}(M): M)$, where A is a prime ideal of R and B is any ideal of R.

References

[1] Ali, M. M. and Smith, D. J.: Pure submodules of Multiplication Modules, Contributions to Algebra and Geometry, Vol. 45 (2004), No. 1, 61-74.
[2] Atani, S. E. and Darani, A. Y.: Notes on the Primal Submodules, Chiang Mai J. Sci. 2008; 35(3), 399 410.
[3] Bothaynah N. Shihab, Hatam Y. Khalaf and Mahmood, L. S.: Purely and Weakly Purely Cancellation Modules, American Journal of Mathematics and Statitics 2014, 4(4), pp 186-190.
[4] Darani, A. Y. : Almost Primal Ideals in Commutative Rings, Chiang Mai J. Sci. 2011; 38(2) : 161-165.
[5] Jabbar, A. K. : A generalization of prime and weakly prime submodules, Pure Mathematical sciences, Vol. 2, No. 1, 2013, pp 1-11.
[6] Jabbar, A. K., Hamaali, P. M. and Hasan, K. A.: Some Properties of Almost Primal and n-Almost Primal Ideals in Commutative Rings, Pioneer Journal of Algebra, Nu mber Theory and its Applications Vol. 4, No. 1, 2012, pp 41-60.
[7] Larsen, M. D. and McCarthy, P. J. : Multiplicative Theory of Ideals, Academic Press, New York and London, 1971.
[8] Mahmood, L. S., Bothaynah N. Shihab and Tahir S. Rasheed: Relatively cancellation modules, Journal of Al-Nahrain University, Vol. 13(2), June, 2010, pp. 175-182.
[9] Naoum, A. G. and Ali S. Mijbass: Weak Cancellation Modules, KYUNGPOOK Math. J. 37(1997), 73 82.
[10] Wisbauer, R. : Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991.

