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1. Introduction  

     In [9], Naoum, A. G. and Mijbas , A. S. studied cancellation and weak cancellation modules and they 

obtained some properties of them. A lso, they studied the relations of weak cancellat ion modules with some 

other types of modules such as projective modules and flat modules and they gave some conditions under 

which pro jective modules and flat modules are weak cancellation modules. In [3], Bothainah, N. S., Hatam 

Y. Khalaf and Mahmood, L. S. purely and weakly purely cancellation modules and they constructed some 

equivalent conditions for each type. In [8], Mahmood, L. S., Bothainah N. S. and Tahir, S. Rashid studied 

relatively cancellation modules and they obtained some relations of this type of modules with cancellation  

modules. Also they studied the effect of localization and trace of modules on this type of modules. 

     In this paper, we define some new types of cancellation modules such as   weak cancellation 

modules,   purely cancellation modules and   weak purely cancellat ion modules and we try  to study 

the effect of localization on  weak cancellat ion modules, purely cancellat ion modules and weak purely 

cancellation modules. Also we try to obtain some properties of them and find some equivalent conditions 

for these new types of cancellation modules.         

     Throughout this paper,   is a commutative ring with identity and   is a left   module, unless 

otherwise stated. A nonempty subset   of   is called a mult iplicatively closed set if        implies that 

     and a multip licatively closed set is called  a mult iplicatively  system if     [7]. If   is a  

multip licat ively system in  , then we denote the localizat ion of   at   by    (or      [7]), which is  

   *
 

 
        + [7]. If   is a prime ideal of  , then one can easily get that     is a mult iplicatively  

system in   and in this case, we denote the localizat ion of   at     by   , so that    *
 

 
       

 +. If   is an ideal of  , then    *
 

 
        + and if   is a p rime ideal of  , then    *

 

 
   

     +. If   is a submodule of  , then   ( )  *        , for some      + [2] and if   is 

an ideal of  , then   ( )  *        , for some    + [4]. For a submodule   of  , (   )  *  
      + and    ( )  (   )  *        + . An ideal   of   is called a pure ideal of    if 

       for every ideal   of   [3], equivalently   is a pure ideal o f   if and only if       for all 

    [1] and   is called a purely cancellation ideal if   is a pure ideal of   and   is any ideal of   such 
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that      , then     [3].   is called a cancellation (weak cancellation) module if   and   are ideals 

of   such that       implies     (     ( )       ( )) [9] and also   is called purely  

(weak purely) cancellat ion module if   is a pure ideal of   and   is an ideal o   such that      , then 

    (     ( )       ( )) [3].   is called relat ively (weak relat ively) cancellat ion module if   

is a prime ideal of   and   is an ideal o   such that      , then     (     ( )    
   ( )) [8]. The Jacobson radical of  , denoted by  ( ) , is defined as  ( )      is a maximal 

submodule of   and if   is considered as   module then the Jacobson radical of  , denoted by  ( ), is 

defined by  ( )      is a maximal ideal of   [10].  

  

2.   Weak Cancellation Modules  

    First, we prove that the localizat ion of the annihilator of an   module is the same as the annihilator of 

the localization of the module. 

Proposition 2.1. Let   be an   module and   a prime ideal of   such that   ( )   , then 

(   ( ))     (  ).  

Proof. Let 
 

 
 (   ( )) , for     and    . Then       ( ) , for some    , which gives  

     . Now let 
 

 
   , where        . We have 

 

 

 

 
 
 

 

 

 

 

 
 

   

   
  , so that 

 

 
    (  ), so 

that (   ( ))     (  ). Next, let 
 

 
    (  ), for     and    , so that 

 

 
    , then by [5, 

Corollary 2.9], we get (  )  
 

 
    . If    , then 

  

 
  , this gives       for some    . 

Now, if     , then     ( )   , which is a contradiction, so that     , that is     , which 

means      ( ), so that 
 

 
 (   ( )) , thus we get    (  )  (   ( )) . Hence (   ( ))  

   (  ). 
     Now, we introduce the definitions of   cancellation and   weak cancellation modules. 

Definition 2.2. Let   be an   module and   be a prime ideal of  . We call   a   cancellation  ( 

  weak cancellation) module if    is a cancellation ( weak cancellation) module. 

     In the following we give an example of a   module   in which      ( )   , for each  

multip licat ive system   in  , also it shows that for some prime ideal   of  , we have   ( )   , fo r every 

submodule   of  .   

Example 2.3. Consider the     as     module. The submodules of     are             and    . 

Now, it is easy to check that: 

    (   )  *                      +. 

    (   )  *                      +. 

    (   )  *                      +. 

    (   )   . 

Next, if   is any multip licat ive system in    , then   does not contain any multip le of  , since if      
 , then we get       , which is a contradiction, so that we get  

  *                                               +.                                                      Clearly  

we have       (   )          (   )        (   )        
(   ). 

That means,      
( )    , for every multip licative system   in     and for every submodule   of    . 

On the other hand we have   *                      + is a  prime ideal of     and clearly we have 

    
( )     , for every submodule       and     (   )     , that is we have     

( )   , fo r 

every submodule   of    . 

Remark 2.4. Let   be a commutative ring with identity and   is a mult iplicative system in   such that 

    ( )   , for every ideal   of  , then it is easy to prove that: 

(1) If   is a pure ideal of  , then    is a pure ideal of   . 

(2) If   is a pure ideal of   , then there exists a unique pure ideal   of   with     . 

      If   is a prime ideal of  , then       is a  mult iplicative system in  . In  view of this the above 

remark becomes as follows: 

Let   be a commutative ring with identity and   is a prime ideal of   such that   ( )   , for every ideal   
of  , then we have: 
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(1) If   is a pure ideal of  , then    is a pure ideal of   . 

(2) If   is a pure ideal of   , then there exists a unique pure ideal   of   with     . 

      It  is known that, if   is a  cancellat ion   module and   is an  ideal of  , then    is a purely 

cancellation module if and only if   is a purely cancellation ideal of   [3, Proposition 2.10]. 

Proposition 2.5. Let   be an   module and   be a prime ideal of   such that   ( )    for every 

submodule   of  . If   is a purely cancellation submodule of  , then    is a purely cancellation 

submodule of   . 

Proof. To show    is a purely cancellation submodule of   . Let        , where   is a pure ideal of  

   and   is any ideal of   . Then by Remark 2.4,     , where   is a  pure ideal of   and     , 

where   is an ideal of  . Then we get (  )                     (  ) . As   (  )    

and   (  )   , we get       and as   is a purely cancellation module, we get     and thus 

         . Hence    is a purely cancellation submodule of   . 

     In the next result we show that under certain condition the localizat ion of a purely cancellation ideal o f a 

ring is also purely cancellation. 

Proposition 2.6. Let   be a commutative ring with identity and   be a prime ideal of   such that   ( )  
  for every ideal   of  . If   is a purely cancellation  ideal of  , then    is a  purely  cancellation ideal of 

  . 

Proof. To show    is a purely cancellation ideal of   . Let        , where   is a  pure ideal of    and 

  is any ideal of   . Then by Remark 2.4,     , where   is a pure ideal of   and     , where   is 

an ideal of  . Then we get (  )                     (  ) . As   (  )    and 

  (  )   , we get       and as   is a purely cancellation ideal, we get     and thus      

    . Hence    is a purely cancellation ideal of   . 

     Next, we extend a property of cancellation modules to   cancellation modules. 

Proposition 2.7. Let   be an   module and   be a prime ideal of   such that   ( )    for every 

submodule   of   and   ( )    for every ideal   of   and let   be an ideal of  . If   is a 

  cancellation module, then    is a purely cancellation module if and only if   is a purely cancellation 

ideal. 

Proof. ( ) Since   is a   cancellation module, so    is a cancellat ion module. Let    be a purely 

cancellation module, then by Proposition 2.6, we get (  )       is a purely cancellation module, so 

that by [3, Proposition 1.10],    is a purely cancellation ideal o f   . To show   is a purely cancellat ion 

ideal of  . Let   be a pure ideal of   and   is an  ideal of   such that      , then we get      
(  )  (  )      . Now, by Remark 2.4, we get    is a pure ideal of    and as    is an ideal of    

and    is a cancellation module, we get       and since   ( )    and   ( )   , we get    . 

Hence   is a purely cancellation ideal of  . 

( ) Let   be a purely  cancellation ideal of  , so by Proposition 2.6, we get    is a  purely cancellation 

ideal of    and as    is a cancellation module by [3, Proposition 1.10], we have      is a purely  

cancellation module. To show    is a purely cancellation module, so let        , where   is a pure 

ideal of   and   is an ideal of  , then    is a pure ideal of    and    is an ideal of   . Now, we have 

       (   )   (   )         and as      is a purely cancellation module, so we get 

     . As   ( )    and   ( )   , we get    . Hence    is a purely cancellation module. 

     Next, we prove the following result which will be used to prove some other results.           

Lemma 2.8. Let   be an   module. If     are ideals of   and   a submodule of  , then  

(1)   (   )    ( ). 
(2)   (   )    ( ).  
Proof. (1) Let     (   ), then    (   )  for some   (   ) , this imp lies that       and 

    , so there exists     for which      but then      . Hence     ( ) , thus  

  (   )    ( ). 
(2) Let     (   ), then    (   ) for some   (   ), this implies that       and     , so  

there exists     for which      but then      . Hence     ( ), thus    (   )    ( ). 
     Next, we give some equivalent conditions for an   module to be a   weak cancellation module. 

Proposition 2.9. If   is an   module and   is a prime ideal of  . If    (     ( ))    and 

  (  )   , for every ideal   of  , then the following conditions are equivalent: 
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(1)   is a   weak cancellation module. 

(2) For ideals     of  ,       implies        ( ). 
(3) If for     and ideal   of  , ( )     implies that        ( ). 
(4) (    )       ( ) for every ideal   of  . 

(5) (     ( )  )  (     ) for any two ideals   and   of  . 

Proof. ( )  ( ). Let    be a weak cancellat ion module and     are ideals of   such that      . 

Then    and    are ideals of    and      (  )  (  )      . As    is weak cancellation, by  

[9, Proposition 1.4], we get          (  ) and as   ( )    (  )   , by Proposition 2.1, we 

get          (  )  (     ( )) . Let     , then 
 

 
 

   

 
, for some    ,      ( )  and 

   . Then                ( ) , for some    . If        ( ) , then      (  
   ( ))   , this gives     or    , which  is a contradiction, so that        ( ) . Hence 

       ( ). 
( )  ( )  ( )  ( ). The proof follows directly by [9, Proposition 1.4]. 

( )  ( ). Let   and   be ideals of   , then there exist ideals   and   of   such that      and     . 

So that by the given condition we have (     ( )  )  (     ) , which gives that (  
   ( )  )  (     )  and since we have   (     ( )  )    (     ( ))    and 

  (     )    (  )    and   ( )    (  )   , so we get (      (  )   )  
(         ), that is (     (  )  )  (       ) , so by [9, Proposition 1.4], we get    is a 

weak cancellation module that means   is a   weak cancellation module. 

     By combining Proposition 2.9 and [9, Proposition 1.4], we get the following theorem.  

Theorem 2.10. If   is an   module and   is a prime ideal o f  . If    (     ( ))    and   (  )  
 , for every ideal   of  , then the following conditions are equivalent: 

(1)   is a weak cancellation module. 

(2)   is a   weak cancellation module. 

(3) For ideals     of  ,       implies        ( ). 
(4) If for     and ideal   of  , ( )     implies that        ( ). 
(5) (    )       ( ) for every ideal   of  . 

(6) (     ( )  )  (     ) for any two ideals   and   of  . 

     It is known that, if an   module   is a cancellat ion module then      for each maximal ideal   of 

  [9, Proposition 2.1]. Here we show that under certain condition this property is also true for every  

  module  . 

Proposition 2.11. Let   be an   module and   is a maximal ideal of   such that   ( )   , then 

    .  

Proof. If possible suppose that     , then for any    , we have 
 

 
  , this implies      for 

some    . If    , then     ( )   , that is a contradiction, so that     which gives that     

which is again a contradiction. Hence     . 

 

3.   purely cancellation modules. 

     We introduce the following definition. 

Definition 3.1. Let   be an   module and   be a prime ideal of  . We call   a   purely cancellation 

module if    is a purely cancellation module. 

     Now, we give some equivalent conditions for an   module to be a   purely cancellation module. 

Proposition 3.2. Let   be an   module and   be a prime ideal of   such that   ( )    and   ( )  
 , for every ideal   of   and every submodule   of  , then the following conditions are equivalent. 

(1)   is a   purely cancellation module. 

(2) If      , where   is any ideal of   and   is a pure ideal of  , then    . 

(3) If ( )    , where     and   is a pure ideal of  , then    . 

(4) (    )    for all pure ideals   of  . 

(5) (     )  (   ) for all ideals   of   and for all pure ideals   of  . 

Proof. ( )  ( ). Let   be a   purely cancellation module and let      , where   is any ideal of   

and   is a pure ideal of  . To show    . We have    is a purely cancellation module. Then    is an  
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ideal o f    and as   is pure, by Remark 242, we get    is a pure ideal of    and also we have      
(  )  (  )      , so by [3, Theorem 1.5], we get      . As   ( )   , we get    . 

( )  ( )  ( )  ( ). The proof follows directly by [3, Theorem 1.5]. 

( )  ( ). Suppose that the condition (2) is  satisfied. To show   is a   purely cancellation module it is 

enough to show that     is a  purely  cancellat ion module. Let   be any pure ideal of    and   be any ideal 

of   , then by Remark 2.4, there exists a unique pure ideal   of   such that      and also there exists 

an ideal   of   such that     . Now, by the given condition (2), we get (     )  (   ) . As 

  (  )   , so that we get (       )  (         )  (     )  (   )   (     )  

(   ). Hence by [2, Theorem 1.5], we get    is a purely cancellat ion module, so that   is a   purely 

cancellation module. 

     By combining Proposition 3.2 and [3, Theorem 1.5], we get the following theorem. 

Theorem 3.3. Let   be an   module and   be a prime ideal of   such that   ( )    and   ( )   , 

for every ideal   of   and every submodule   of  , then the following conditions are equivalent. 

(1)   is a purely cancellation module. 

(2)   is a   purely cancellation module. 

(3) If      , where   is any ideal of   and   is a pure ideal of  , then    . 

(4) If ( )    , where     and   is a pure ideal of  , then    . 

(5) (    )    for all pure ideals   of  . 

(6) (     )  (   ) for all ideals   of   and for all pure ideals   of  . 

 

4.   Weak Purely Cancellation Modules  

     Now we introduce the following definition. 

Definition 4.1. Let   be an   module and   is a prime ideal of  . We call   a   weak purely 

cancellation module if    is a weak cancellation module. 

Theorem 4.2. Let   be an   module and   be a prime ideal of   such that   ( )    and   ( )   , 

for every ideal   of   and every submodule   of  , then the following conditions are equivalent.  

(1)   is a   weak purely cancellation module. 

(2) If   is an ideal of   and   is a pure ideal of  , then       implies        ( ). 
(3) If     and   is a pure ideal of  , then ( )     implies        ( ). 
(4) (    )       ( ) , for all pure ideals   of  . 

(5) (     )  (     ( )  ), where   is a pure ideal of   and   is any ideal of  . 

Proof. The proof follows by using the same technique as we have used in Proposition 3.2.  

 

5.   Weak Relatively Cancellation Modules  

      We introduce the following definition. 

Definition 5.1. Let   be an   module and   is a prime ideal of  . We call   a   relatively (  weak 

relatively) cancellation module if    is a relatively (weak relatively) cancellation module. 

     It is known that, if   is a prime ideal of  , then    is a local ring with    as its unique maximal ideal 

and also we have   ( )    [7]. Now, by using this fact we prove the following result. 

Proposition 5.2. Let    be an   module and    is a prime ideal of  , such that   ( ( ))    and 

  ( )   . If   is a   relatively cancellation module, then    ( )   . 

Proof. Since    is a   relatively cancellation module, so that    is relatively  cancellation module, so by 

[8, Corollary 3.3], we get    (  )   (  ). Since   ( )   , so we have (   ( ))     (  ), and  

as    is the unique maximal ideal of   , we have  (  )    , so that we get (   ( ))    . Now, let 

     ( ), then 
 

 
   , so that     , for some     and as   is a  prime ideal, we get    , which  

gives   ( )   , so that    ( )   . 

     The fo llowing result proves that under certain conditions the localization of a maximal submodule of an  

  module is also maximal.  

Proposition 5.3. Let   be an   module and   is a multip licat ively system in  . If   is a maximal 

submodule of   such that     ( )   , then    is a maximal submodule of     Furthermore, if   is a 

prime ideal of  , then    is a maximal submodule of   . 
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Proof. Let       and    , then for each    , we have 
 

 
   , this gives that     , for some 

   . If    , then we get     ( ) , thus we get     ( )   , that is a contradiction, so that    is a 

proper ideal of   . Now, let        , where   is a submodule of   . Then      for some 

submodule   of   with     ( )   , so that         , and as     ( )   , we get      , 

this gives       or      , that is      or      . Hence    is a maximal submodule of     For the 

proof of the second part, as       is a mult iplicatively system in  , so by taking       in the proof 

of the first part we get the result at once. 

     Next we prove that, for an   module   and a multip licative system  , each maximal submodule of    

is a localization of a unique maximal submodule of  .  

Proposition 5.4. Let   be an   module and   is a multip licat ively system in  . If   is a maximal 

submodule of   , then there exists a maximal submodule   of   with      and     ( )   . 

Furthermore, if   is a prime ideal of  , then there exists a maximal submodule   of   with      and 

  ( )   . 

Proof. As   is a submodule of   , we get      , for some submodule   of   with     ( )   . It 

remains to show that   is a  maximal submodule of  . Let      , where   is any submodule o f  . If 

   , then we get      , this contradicts the fact that    is a  maximal submodule of   , so that 

   , that is   is a  proper submodule of  . A lso we have          and since    is a maximal 

submodule of   , we get       or      . Now, if      , then as     ( )   , we get     and 

hence     and if      , then as    , we get   ( )    ( )   , so that      ( )      ( )  

 . Let     (this is possible since    ). Now for any    , we have 
 

 
   , so we get     , fo r 

some     and if    , we get     ( ), th is gives that     ( )   , that is a  contradiction, so that 

we must have    , this gives    . Hence   is a maximal submodule of  . The proof of the second 

part follows directly by putting       in the proof of the first part.  

     By combining Proposition 5.3 and Proposition 5.4 we get the fo llowing theorem which provides a one 

to one correspondence between the maximal submodules   of   that does not intersect   ( )  and the 

maximal submodules of   . 

Theorem 5.5. Let   be an   module and    is a mult iplicatively system in  , then there is a one to one 

correspondence between the maximal submodules of    and the maximal submodules   of   for which  

    ( )   . Furthermore, if   is a prime ideal of  , then there is a one to one correspondence between 

the maximal submodules of    and the maximal submodules   of   for which   ( )   . 

Proof.  Let   *    is a maximal submodule of   + and   *    is a maximal submodule of   for 

which     ( )   +. We define       as follows:                            let    , so that   is a maxima l 

submodule of   with     ( )   , then by Proposition 5.3, we get    is a maximal submodule of   , 

so that      and we define  ( )    . By using Proposition 5.3 and Proposition 5.4 one can easily  

prove that   is a bijective mapping so that   defines a one to one correspondence between   and  . The 

proof of the second part follows directly by taking       as a multiplicative system. 

     By using the Proposition 5.4, we are able to prove the following result.    

Proposition 5.6. Let   be an   module and   is a prime ideal of  , then ( ( ))   (  ). 

Proof. Let 
 

 
 ( ( )) , where        . Then     ( ), for some    . Now, let   be a 

maximal submodule of   , so by Proposition 5.4, there exists a maximal submodule   of   such that 

     and     ( )   , then we get     . If    , then     ( ), thus we get     ( )   , 

that is a contradiction, so we get     and thus 
 

 
     . Hence 

 

 
  (  ), so that ( ( ))  

 (  ). 
     In the following result we g ive some equivalent conditions for an   module to be a   relatively 

cancellation module.   

Theorem 5.7. Let   be an   module and   be a prime ideal of   such that   ( )    and 

  ( )   , for every ideal   of   and every submodule   of  , then the following conditions are 

equivalent.  

(1)   is a   relatively cancellation module. 

(2) If   is an ideal of   and   is a prime ideal of  , then       implies that    . 

(3) If     and   is a prime ideal of  , then ( )     implies    . 
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(4) (    )   , for all prime ideals   of  . 

(5) (     )  (   ), where   is a prime ideal of   and   is any ideal of  . 

Proof. ( )  ( ). Suppose that   is a   relatively cancellation module and      , where    is an 

ideal of   and   is a prime ideal o f  . Then we have    is a  relatively  cancellat ion module and    is an  

ideal o f    and as   ( )   , we get    is a prime ideal of   , so by [8, Theorem 2.5], we have       

and as   ( )   , we get    . 

( )  ( )  ( )  ( ). The proof follows directly by [8, Theorem 2.5]. 

( )  ( ). Suppose that the condition (5) holds. To show   is a   relatively cancellation module it is 

enough to show that    is a relatively  cancellat ion module. Let   be any prime ideal of    and   be any 

ideal of   , then there exists a prime ideal   of   and an ideal   of   with      and     . Then by  

the given condition we have (     )  (   ) , then we have (       )  (         )   

(     )  (   )   (     )  (   ) , so by [8, Theorem 6.6], we get    is a  relatively  

cancellation module and thus   is a   relatively cancellation module.      

    By combining Theorem 5.7 and [8, Theorem 2.5], we get the following theorem. 

Theorem 5.8. Let   be an   module and   be a prime ideal of   such that   ( )    and   ( )   , 

for every ideal   of   and every submodule   of  , then the following conditions are equivalent. 

(1)   is a relatively cancellation module. 

(2)   is a   relatively cancellation module. 

(3) If   is an ideal of   and   is a prime ideal of  , then       implies that    . 

(4) If     and   is a prime ideal of  , then ( )     implies    . 

(5) (    )   , for all prime ideals   of  . 

(6) (     )  (   ), where   is a prime ideal of   and   is any ideal of  . 

     Next we give some equivalent conditions for an   module to be a   weak relat ively cancellation 

module. 

Theorem 5.9. Let   be an   module and   be a prime ideal of   such that   ( )    and 

  ( )   , for every ideal   of   and every submodule   of  , then the following conditions are 

equivalent.  

(1)   is a   weak relatively cancellation module. 

(2) If   is an ideal of   and   is a prime ideal of  , then       implies that        ( ). 
(3) If     and   is a prime ideal of  , then ( )     implies        ( ). 
(4) (    )       ( ) , for all prime ideals   of  . 

(5) (     )  (     ( )  ), where   is a prime ideal of   and   is any ideal of  . 

Proof. ( )  ( ). Suppose that   is a   weak relat ively  cancellat ion module and      , where    is 

an ideal o f   and   is a prime ideal of  . Then we have    is a weak relatively cancellation module and  

   is an ideal of    and as   ( )   , we get    is a  prime ideal o f   , so by [8, Theorem 6.6], we have 

         (  ) and as   ( )   , we get (   ( ))     (  ), so we get    (     ( ))  

and as   (     ( ))   , we get        ( ). 
( )  ( )  ( )  ( ). The proof follows directly by [8, Theorem 6.6]. 

( )  ( ). Suppose that the condition (2) holds. To show   is a   weak relat ively cancellation module it 

is enough to show that    is weak relatively cancellation module. Let   be any prime ideal of    and   be 

any ideal of   , then there exists a prime ideal   of   and an ideal   of   with      and     . Then 

by the given condition we have (     )  (     ( )   ) , then we have (       )  

(         )   (     )  (     ( )   )   (      (  )   )  (     (  )   ) , so 

by [8, Theorem 6.6], we get    is a weak relat ively cancellation module and thus   is a   weak 

relatively cancellation module.      

     By combining Theorem 5.9 and [8, Theorem 6.6], we get the following theorem.  

Theorem 5.10. Let   be an   module and   be a prime ideal of   such that   ( )    and   ( )   , 

for every ideal   of   and every submodule   of  , then the following conditions are equivalent. 

(1)   is a weak relatively cancellation module. 

(2)   is a   weak relatively cancellation module. 

(3) If   is an ideal of   and   is a prime ideal of  , then       implies that        ( ). 
(4) If     and   is a prime ideal of  , then ( )     implies        ( ). 
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(5) (    )       ( ) , for all ideals   of  . 

(6) (     )  (     ( )  ), where   is a prime ideal of   and   is any ideal of  . 

 

References 

[1] Ali, M. M. and Smith, D. J.: Pure submodules  of Multip licat ion Modules, Contributions to Algebra and 

Geometry, Vol. 45 (2004), No. 1, 61-74. 

[2] Atani, S. E. and Daran i, A. Y.: Notes on the Primal Submodules, Chiang Mai J. Sci. 2008; 35(3), 399 -

410. 

[3] Bothaynah N. Sh ihab, Hatam Y. Khalaf and Mahmood, L. S.: Purely and Weakly Purely Cancellation  

Modules, American Journal of Mathematics and Statitics 2014, 4(4),     pp 186-190.   

[4] Darani, A. Y. : Almost Primal Ideals in Commutative Rings, Chiang Mai J. Sci. 2011; 38(2) : 161-165. 

[5] Jabbar, A. K. : A generalization of prime and weakly prime submodules, Pure Mathematical sciences, 

Vol. 2, No. 1, 2013, pp 1-11. 

[6] Jabbar, A. K., Hamaali, P. M. and Hasan, K. A.: Some Properties of Almost Primal and   Almost 

Primal Ideals in Commutative Rings, Pioneer Journal of Algebra, Number Theory and its Applications Vol. 

4, No. 1, 2012, pp 41-60.  

[7] Larsen, M. D. and McCarthy, P. J. : Mult iplicative Theory of Ideals, Academic Press, New York and 

London, 1971. 

[8] Mahmood, L. S., Bothaynah N. Shihab  and Tahir S. Rasheed: Relatively cancellation modules, Journal 

of Al-Nahrain University, Vol. 13(2), June, 2010, pp. 175-182.      

[9] Naoum, A. G. and Ali S. Mijbass: Weak Cancellation Modules, KYUNGPOOK Math. J. 37(1997), 73 -

82.      

[10] Wisbauer, R. : Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, 

1991. 

 


