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Abstract

In this paper, we introduce some new types of cancellation modules such as P —weak cancellation modules,
P —purely cancellation modules and P —weak purely cancellation modules, where P is a prime ideal of a
commutative ring R and M is an R —module. We try to give some equivalent conditions for each type and
determine some relations between these types and some other types of modules such as weak cancellation
modules, purely cancellation modules and weak purely cancellation modules.
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1. Introduction

In [9], Naoum, A. G. and Mijbas, A. S. studied cancellation and weak cancellation modules and they
obtained some properties of them. Also, they studied the relations of weak cancellation modules with some
other types of modules such as projective modules and flat modules and they gave some conditions under
which projective modules and flat modules are weak cancellation modules. In [3], Bothainah, N. S., Hatam
Y. Khalaf and Mahmood, L. S. purely and weakly purely cancellation modules and they constructed some
equivalent conditions for each type. In [8], Mahmood, L. S., Bothainah N. S. and Tahir, S. Rashid studied
relatively cancellation modules and they obtained some relations of this type of modules with cancellation
modules. Also they studied the effect of localization and trace of modules on this type of modules.

In this paper, we define some new types of cancellation modules such as P — weak cancellation
modules, P —purely cancellation modules and P —weak purely cancellation modules and we try to study
the effect of localization on weak cancellation modules, purely cancellation modules and weak purely
cancellation modules. Also we try to obtain some properties of them and find some equivalent conditions
for these new types of cancellation modules.

Throughout this paper, R is a commutative ring with identity and M is a left R — module, unless
otherwise stated. A nonempty subset S of R is called a multiplicatively closed set if a,b € S implies that
ab € S and a multiplicatively closed set is called a multiplicatively system if 0 ¢S [7]. If S is a
multip licatively system in R, then we denote the localization of R at S by R (or S™*R [7]), which is

Ry = {f :7 € R,s € S}[7]. If P is aprime ideal of R, then one can easily get that R \ P is a multiplicatively
system in R and in this case, we denote the localization of R at R \ P by Rp, so thatR, = {i:r ERp¢E

P}. If Ais an ideal of R, then Ag = {f:aeA,s € S}and if P is a prime ideal of R, then A, = {f:a €

A,p & P}. If Nis a submodule of M, then S,,(N) = {r € R:rx € N, for some x € M\ N}[2] and if A is
an ideal of R, then S,(4) = {r € R:ra € A, for some a ¢ A}[4]. For asubmodule K of M, (K: M) = {r €
R:vM < K} and ann(M) = (0: M) = {r € R:vM = 0}. An ideal A of R is called a pure ideal of R if
ANB = AB for every ideal B of R [3], equivalently A is a pure ideal of R if and only if Aa = Ra for all
a € A[1] and A is called a purely cancellation ideal if B is a pure ideal of R and C is any ideal of R such
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that BA = CA, then B = C [3]. M is called a cancellation (weak cancellation) module if A and B are ideals
of R such that AM = BM implies A= B (A + ann(M) = B + ann(M)) [9] and also M is called purely
(weak purely) cancellation module if A is a pure ideal of R and B is an ideal o R such that AM = BM, then
A= B (A+ ann(M) =B + ann(M)) [3]. M is called relatively (weak relatively) cancellation module if A
is a prime ideal of R and B is an ideal o R such that AM = BM, then A =B (A + ann(M) = B +
ann (M)) [8]. The Jacobson radical of M, denoted by J(M), is defined as J(M) = N K is a maximal
submodule of M and if R is considered as R —module then the Jacobson radical of R, denoted by J (R), is
defined by J(R) = N, P is amaximal ideal of R [10].

2. P —Weak Cancellation Modules

First, we prove that the localization of the annihilator of an R —module is the same as the annihilator of
the localization of the module.
Proposition 2.1. Let M be an R —module and P a prime ideal of R suchthatS,,(0) € P, then
(anmn(M))p = ann (Mp).
Proof. Let %e (ann(M))p, for r € R and p & P. Then qr € ann(M), for some q ¢ P, which gives
qrM = 0. Now Iet%e M,, where x € M,t ¢ P. We have :—)f =§:—)f= Z:T’; =0, S0 that% € ann(M,), SO
that (ann (M) ), S ann(M,). Next, let :—) € ann(M,), forr e Randp & P, so that:—)MP = 0, then by [5,
Corollary 2.9], we get (rM), =§MP =0. If x € M, then % = 0, this gives trx = 0 for some t & P.
Now, if rx # 0, then t € S,,(0) € P, which is a contradiction, so that rx = 0, that is rM = 0, which
means r € ann (M), so thatie (ann(M)),, thus we get ann (M) S (ann(M)),. Hence (ann(M)), =

ann (Mp).

Now, we introduce the definitions of P —cancellation and P —weak cancellation modules.

Definition 2.2. Let M be an R —module and P be a prime ideal of R. We call M a P — cancellation (
P —weak cancellation) module if M, is a cancellation ( weak cancellation) module.

In the following we give an example of a R —module M in which SNS,(N) =@, for each
mu ltip licative system S in R, also it shows that for some prime ideal P of R, we have S,,(N) < P, forevery
submodule N of M.

Example 2.3. Consider the Z,, as Z,, —module. The submodules of Z,, are <0 >,< 3 >,< 9 >and Z,,.
Now, it is easy to check that:

S,,,(<0>) =1{0,3,6,9,12,15,18, 21, 24}.

5227(227) =0.

Next, if Sis any multiplicative systemin Z,,, then S does not contain any multiple of 3,since if s =3x €
S , then we get 0=s® €S , which is a contradiction, so that we get
§<{1,2,45,7,810,11,13,14,16,17,19, 20, 22, 23, 25, 26}. Clearly
we have SNS, (<0>) =08 = SNS,, (<3 >) = SNS,,_ (<9 >) = SNS,, (Z,,).

That means, 05227(N) =@, for every multiplicative system Sin Z,, and for every submodule N of Z,,.

Sz,,(N) = P < P, for every submodule N # Z,; and S, (Z,;) =@ S P, thatis we have S, _(N) € P, for
every submodule N of Z,,.
Remark 2.4. Let R be a commutative ring with identity and Sis a multiplicative system in R such that
SNSx(D) = @, for every ideal I of R, then it is easy to prove that:
(1) If A'is apureideal of R, then Ag is a pure ideal of Ry.
(2) If A'is a pure ideal of Ry, then there exists a unique pure ideal A of R with 4 = Aq.

If P is a prime ideal of R, then S = R\P is a multiplicative system in R. In view of this the above
remark becomes as follows:
Let R be a commutative ring with identity and P is a prime ideal of R such thatS,(I) € P, for every ideal I
of R, then we have:
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(1) If A'is apureideal of R, then A, is a pure ideal of Rp.
(2) If A'is apure ideal of R, then there exists a unique pure ideal A of R with 4 = A,.

It is known that, if M is a cancellation R —module and A is an ideal of R, then AM is a purely
cancellation module if andonly if A is a purely cancellation ideal of R [3, Proposition 2.10].
Proposition 2.5. Let M be an R —module and P be a prime ideal of R such that S,,(K) € P for every
submodule K of M. If N is a purely cancellation submodule of M, then N, is a purely cancellation
submodule of M.
Proof. To show N, is a purely cancellation submodule of M,. Let AN, = BN, where 4 is a pure ideal of
Rpand B is any ideal of R,. Then by Remark 2.4, A = A,, where A is a pure ideal of Rand B = B,,
where B is an ideal of R. Then we get (AN)p = ApNp = ANp = BNp = BpNp = (BN)p. As Sy, (AN) € P
and S, (BN) € P, we get AN = BN and as N is a purely cancellation module, we get A = B and thus
A= A, = B, = B. Hence N, is a purely cancellation submodule of M,.

In the next result we show that under certain condition the localization of a purely cancellation ideal ofa
ring is also purely cancellation.
Proposition 2.6. Let R be a commutative ring with identity and P be a prime ideal of R such thatSz(I) S
P for every ideal I of R. If A is a purely cancellation ideal of R, then A4, is a purely cancellation ideal of
Rp.
Proof. To show A, is a purely cancellation ideal of R,. Let BA, = CAp, where B is a pure ideal of R, and
C is any ideal of R,. Then by Remark 2.4, B = B,,, where B is a pure ideal of R and C = Cp, where C is
an ideal of R. Then we get (BA), = BpAp = BAp =CAp = CpAp = (CA)p . As S, (BA) S P and
Sy(CA) € P, we get BA = CAand as A is a purely cancellation ideal, we get B = C and thus B = B, =

Cp = C. Hence A, is a purely cancellation ideal of Rj.

Next, we extend a property of cancellation modules to P —cancellation modules.
Proposition 2.7. Let M be an R —module and P be a prime ideal of R such that S,,(K) € P for every
submodule K of M and Sp(I) < P for every ideal I of R and let A be an ideal of R. If M is a
P —cancellation module, then AM is a purely cancellation module if and only if A is a purely cancellation
ideal.
Proof. (=) Since M is a P —cancellation module, so M, is a cancellation module. Let AM be a purely
cancellation module, then by Proposition 2.6, we get (AM), = A, M, is a purely cancellation module, so
that by [3, Proposition 1.10], A, is a purely cancellation ideal of R,. To show A is a purely cancellation
ideal of R. Let B be a pure ideal of Rand C is an ideal of R such that BA = CA, then we get BpAp, =
(BA)p = (CA)p = CpAp. Now, by Remark 2.4, we get B, is a pure ideal of R, and as A4, is an ideal of R,
and M is a cancellation module, we get B, = Cp and since Sy(B) € P and Sz(C) € P, we getB = C.
Hence A is a purely cancellation ideal of R.
(&) Let A be a purely cancellation ideal of R, so by Proposition 2.6, we get A is a purely cancellation
ideal of R, and as M, is a cancellation module by [3, Proposition 1.10], we have A, M, is a purely
cancellation module. To show AM is a purely cancellation module, so let BAM = CAM, where B is a pure
ideal of R and C is an ideal of R, then B, is a pure ideal of R, and Cp is an ideal of R,. Now, we have
BpApMp = (BAM)p = (CAM), = CpApMp and as ApM, is a purely cancellation module, so we get
Bp = Cp. AsSg(B) € P and S,(C) € P,we get B = C. Hence AM is a purely cancellation module.

Next, we prove the following result which will be usedto prove some other results.
Lemma 2.8.Let M bean R —module. If A4, B are ideals of R and N a submodule of M, then
D) Sy(N: M) € S, (N).
(2) Sg(4:B) < Sx(4).
Proof. (1) Let r € S),(N: M), then rx € (N: M) for some x & (N:M), this implies that rxM € N and
xM & N, so there exists m € M for which xm ¢ N but then rxm € N. Hence r € §,,(N) , thus
SyN: M) € S, (N).
(2) Let r € Sy (A: B), then rx € (A: B) for some x ¢ (A:B), this implies that rxB € A and xB £ A, so
there exists m € B for which xm & A butthenrxm € A. Hence r € Sz (4), thus Sz (4: B) S Sz (4).

Next, we give some equivalent conditions for an R —module to be a P —weak cancellation module.
Proposition 2.9. If M is an R —module and P is a prime ideal of R. If S, (I + ann(M)) € P and
Sy (M) < P, for every ideal I of R, then the following conditions are equivalent:
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(1) M is a P —weak cancellation module.

(2) For ideals A, B of R, AM < BM implies A € B + ann(M).

(3) If for a € R and ideal B of R, (a) M < BM implies thata € B + ann (M).

4) (AM :M) = A+ ann (M) for every ideal A of R.

(5) (4 + ann (M):B) = (AM: BM) for any two ideals A and B of R.

Proof. (1) = (2). Let M, be a weak cancellation module and A, B are ideals of R such that AM € BM.
Then A, and B;, are ideals of R, and A, M, = (AM), € (BM) , = B,M,. As M, is weak cancellation, by
[9, Proposition 1.4], we get A, € B, + ann (M, ) and as S,,(0) = S,,(0M) S P, by Proposition 2.1, we
getAp € Bp + ann(Mp) = (B 4+ ann(M)),. Let a € 4, then % = b;—s, for some b € B, s € ann (M) and

p &€ P. Then gpa =qb + qs € B+ ann(M), for some q & P. If a ¢ B+ ann(M), then gp € S, (B +
ann(M)) € P, this gives g € P or p € P, which is a contradiction, so that a € B + ann(M). Hence
A C B+ ann(M).
(2) = (3) = (4) = (5). The proof follows directly by [9, Proposition 1.4].
(5) = (1). Let 4 and B be ideals of R,, then there exist ideals A and B of R such that A = A, and B = B,.
So that by the given condition we have (A4 + ann(M):B) = (AM:BM) , which gives that (A +
ann(M):B)p = (AM:BM), and since we have Sz(A +ann(M):B) € Sy(A +anmn(M)) € P and
Sy(AM:BM) € S, (AM) € P and S,(0)=5,(0M)cP , so we get (4, +ann(Mp):Bp) =
(ApM,: BpM,), that is (A + ann(M,): B) = (AM,: BM, ), so by [9, Proposition 1.4], we get M, is a
weak cancellation module that means M is a P —weak cancellation module.

By combining Proposition 2.9 and [9, Proposition 1.4], we getthe following theorem.
Theorem 2.10. If M is an R —module and P is a prime ideal of R. If S,,(I + ann(M)) € P and S,,(IM) €
P, for every ideal I of R, then the following conditions are equivalent:
(1) M is a weak cancellation module.
(2) M is a P —weak cancellation module.
(3) For ideals A, B of R, AM < BM implies A € B + ann(M).
(4) If for a € R and ideal B of R, (a) M € BM implies thata € B + ann (M).
(5) (AM :M) = A+ ann (M) for every ideal A of R.
6) (4 + ann (M):B) = (AM: BM) for any two ideals A and B of R.

It is known that, if an R —module M is a cancellation module then M, # 0 for each maximal ideal P of
R [9, Proposition 2.1]. Here we show that under certain condition this property is also true for every
R —module M.
Proposition 2.11. Let M be an R —module and P is a maximal ideal of R such that S,,(0) € P, then
Mp # 0.
Proof. If possible suppose that M, = 0, then for any m € M, we have %= 0, this implies gm = 0 for

some q ¢ P. If m # 0, then q € 5,,(0) S P, that is a contradiction, so that m = 0 which gives that M = 0
which is again a contradiction. Hence M, # 0.

3. P —purely cancellation modules.

We introduce the following definition.

Definition 3.1. Let M be an R —module and P be a prime ideal of R. We call M a P —purely cancellation
module if M, is a purely cancellation module.

Now, we give some equivalent conditions for an R —module to be a P —purely cancellation module.
Proposition 3.2. Let M be an R —module and P be a prime ideal of R such that S,(I) € P and S,,(N) <
P, for every ideal I of R and every submodule N of M, then the following conditions are equivalent.

(1) M is a P —purely cancellation module.

(2) If AM < BM, where A is any ideal of R and B is a pure ideal of R, then A € B.

(3) If (@M < BM, where a € R and B is a pure ideal of R, thena € B.

4) (AM:M) = A for all pure ideals A of R.

(5) (AM:BM) = (A:B) for all ideals B of R and for all pure ideals A of R.

Proof. (1) = (2). Let M be a P —purely cancellation module and let AM < BM, where A is any ideal of R
and B is a pure ideal of R. To show A € B. We have M, is a purely cancellation module. Then A, is an
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ideal of R, and as B is pure, by Remark 242, we get B, is a pure ideal of R, and also we have A, M, =
(AM), < (BM) , = BpM,, soby [3, Theorem 1.5], we get A, € B,. As S(B) S P,we get A € B.
(2) = (3) = (4) = (5). The proof follows directly by [3, Theorem 1.5].
(5) = (1). Suppose that the condition (2) is satisfied. To show M is a P —purely cancellation module it is
enough to show that M, is a purely cancellation module. Let A be any pure ideal of R, and B be any ideal
of Rp, then by Remark 2.4, there exists a unique pure ideal A of R such that A = A, and also there exists
an ideal B of R such that B = B,. Now, by the given condition (2), we get (AM:BM) = (A:B). As
Sy(AM) € P, so that we get (AM,:BM,) = (ApMp: BpM,) = (AM:BM), = (A:B)p = (4p:B,) =
(A: B). Hence by [2, Theorem 1.5], we get M, is a purely cancellation module, so that M is a P —purely
cancellation module.

By combining Proposition 3.2 and [3, Theorem 1.5], we getthe following theorem.
Theorem 3.3. Let M be an R —module and P be a prime ideal of R such thatS;(I) € P and S,,(N) € P,
for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a purely cancellation module.
(2) M is a P —purely cancellation module.
(3) If AM < BM, where A is any ideal of R and B is a pure ideal of R, then A C B.
(4) If (@M < BM, where a € R and B is a pure ideal of R, thena € B.
(5) (AM:M) = A for all pure ideals A of R.
(6) (AM:BM) = (A:B) for all ideals B of R and for all pure ideals A of R.

4. P —Weak Purely Cancellation Modules
Now we introduce the following definition.
Definition 4.1. Let M be an R —module and P is a prime ideal of R. We call M a P —weak purely
cancellation module if M, is a weak cancellation module.
Theorem 4.2. Let M be an R —module and P be a prime ideal of R such thatS;(I) € P and S,,(N) € P,
for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a P —weak purely cancellation module.
(2) If A'is an ideal of R and B is a pure ideal of R, then AM < BM implies A € B + ann(M).
(3) If a € Rand B is a pure ideal of R, then (a)M < BM implies a € B + ann(M).
4) (AM:M) = A+ ann(M), for all pure ideals A of R.
(5) (AM:BM) = (A + ann(M): M), where A is a pure ideal of R and B is any ideal of R.
Proof. The proof follows by using the same technique as we have used in Proposition 3.2.

5. P —Weak Relatively Cancellation Modules

We introduce the following definition.
Definition 5.1. Let M be an R —module and P is a prime ideal of R. We call M a P —relatively (P —weak
relatively) cancellation module if M, is a relatively (weak relatively) cancellation module.

It is known that, if P is a prime ideal of R, then R, is a local ring with P, as its unique maximal ideal
and alsowe have S, (P) = P [7]. Now, by using this fact we prove the following result.
Proposition 5.2. Let M be an R —module and P is a prime ideal of R, such that S,(J(R)) € P and
Su(0) S P.If Misa P —relatively cancellation module, then ann (M) < P.
Proof. Since M is a P —relatively cancellation module, so that M, is relatively cancellation module, so by
[8, Corollary 3.3], we get ann (M) < J(R,). Since S,,(0) € P, so we have (ann(M)), = ann (M, ), and
as P, is the unique maximal ideal of R, we have J(R,) = P, so that we get (ann(M)), S P». Now, let
x € ann (M), thenfe P, so that px € P, forsome p € P and as P is a prime ideal, we get x € P, which

gives Sy(P) € P, sothat ann(M) € P.

The following result proves that under certain conditions the localization of a maximal submodule of an
R —module is also maximal.
Proposition 5.3. Let M be an R —module and S is a multiplicatively system in R. If K is a maximal
submodule of M such that SNS,,(K) = @, then K, is a maximal submodule of M;. Furthermore, if P is a
prime ideal of R, then K, is a maximal submodule of M.
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Proof. Let Kg = Mg and s € S, then for each m € M, we have?e Kg, this gives thattm € K, for some
t€S.Ifm ¢ K, then we gett € S,,(K), thus we getSNS,,(K) # 9, that is a contradiction, so that K, is a
proper ideal of M;. Now, let K, € L € M, where L is a submodule of M. Then L = L, for some
submodule L of M with SNS,, (L) = @, so that Ks € Ly © My, and as SNS,, (L) =@, we get K S L S M,
this gives K = Lg or Ly = Mj, thatis Kg = L or L = M. Hence K is a maximal submodule of M. For the
proof of the second part, as S = R\P is a multiplicatively systemin R, so by taking S = R\P in the proof
of the first part we getthe result at once.

Next we prove that, foran R —module M and a multip licative system S, each maximal submodule of M
is a localization of a unique maximal submodule of M.
Proposition 5.4. Let M be an R —module and S is a multiplicatively system in R. If K is a maximal
submodule of Mg, then there exists a maximal submodule K of S with K = K, and SNS,,(K) =@ .
Furthermore, if P is a prime ideal of R, then there exists a maximal submodule K of S with K = K, and
Sy(®) c P.
Proof. As K is a submodule of M, we get K = K, for some submodule K of M with SNS,,(K) = @. It
remains to show that K is a maximal submodule of M. Let K € L € M, where L is any submodule of M. If
K = M, then we get K; = M, this contradicts the fact that K is a maximal submodule of M, so that
K # M, that is K is a proper submodule of M. Also we have K; € Lg S M, and since K is a maximal
submodule of My, we get Kg = Lg or Ly = M. Now, if K; = L, then as SNS,,(K) = @, we get L € K and
hence K = Land if Ly = Mg, thenas L = K, we get S,,(L) = S,,(K) = 9, so that SNS,,(L) = SNS,,(K) =
@. Let s € S (this is possible since S # @). Now for any m € M, we have = € Lg, so we gettm € L, for

N
somet € Sand if m & L, we get t € S,,(L), this gives that SNS,,(L) # @, that is a contradiction, so that
we must have m € L, this gives L = M. Hence K is a maximal submodule of M. The proof of the second
part follows directly by putting S = R\P in the proof of the first part.

By combining Proposition 5.3 and Proposition 5.4 we get the following theorem which provides a one
to one correspondence between the maximal submodules N of M that does not intersect S,,(N) and the
maximal submodules of M.

Theorem 5.5. Let M be an R —module and S is a multiplicatively systemin R, then there is a one to one
correspondence between the maximal submodules of Mg and the maximal submodules N of M for which
SNS, (N) = @. Furthermore, if P is a prime ideal of R, then there is a one to one correspondence between
the maximal submodules of M, and the maximal submodules N of M for which S,,(N) < P.

Proof. LetT ={N:N is a maximal submodule of M;}and ¥ = {N: N is a maximal submodule of M for
which SNS,,(N) = @}. We define f: ¥ - I as follows: let N € ¥,sothat N is a maximal
submodule of M with SNS,,(N) = @, then by Proposition 5.3, we get Ny is a maximal submodule of M,
so that Ng € I and we define f(N) = N By using Proposition 5.3 and Proposition 5.4 one can easily
prove that f is a bijective mapping so that f defines a one to one correspondence between ¥ and I'. The
proof of the second part follows directly by taking S = R\P as a multiplicative system.

By using the Proposition 5.4, we are able to prove the following result.

Proposition 5.6. Let M be an R —module and P is a prime ideal of R, then J (M), S J(M,).
Proof. Let %E JM)),, where m € M,p & P. Then gm € J(M), for some q ¢ P. Now, let N be a

maximal submodule of M,, so by Proposition 5.4, there exists a maximal submodule N of S such that
N = N and SNS,,(N) = @, then we get gm € N. If m & N, then g € S,,(N), thus we get SNS,,(N) # @,
that is a contradiction, so we get m € N and thus % € Ng = N. Hence % € J(M,), so that J(M)), €

J(Mp).
In the following result we give some equivalent conditions for an R —module to be a P —relatively
cancellation module.
Theorem 5.7. Let M be an R —module and P be a prime ideal of R suchthatS; (/) € P and
Sy(N) € P, for every ideal I of R and every submodule N of M, then the following conditions are
equivalent.
(1) M is a P —relatively cancellation module.
(2) If A'is an ideal of R and B is a prime ideal of R, then AM < BM implies that A € B.
(3) If a € Rand B is a prime ideal of R, then (a)M < BM implies a € B.
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(4) (AM:M) = A, forall prime ideals A of R.
(5) (AM:BM) = (A:B), where A is a prime ideal of R and B is any ideal of R.
Proof. (1) = (2). Suppose that M is a P —relatively cancellation module and AM < BM, where A is an
ideal of R and B is a prime ideal of R. Then we have M, is a relatively cancellation module and A, is an
ideal of R, and as S,(B) S P, we get B, is a prime ideal of R, so by [8, Theorem 2.5], we have A, € B,
and as S, (0) € P, we getA € B.
(2) = (3) = (4) = (5). The proof follows directly by [8, Theorem 2.5].
(5) = (1). Suppose that the condition (5) holds. To show M is a P —relatively cancellation module it is
enough to show that M, is a relatively cancellation module. Let 4 be any prime ideal of R, and B be any
ideal of R,, then there exists a prime ideal A of R and an ideal B of R with A = A, and B = B,. Then by
the given condition we have (AM:BM) = (A:B) , then we have (AM,:BM,) = (ApMp:ByM,) =
(AM:BM), = (A:B)p = (Ap:Bp) = (A:B), so by [8, Theorem 6.6], we get M, is a relatively
cancellation module and thus M is a P —relatively cancellation module.

By combining Theorem 5.7 and [8, Theorem 2.5], we get the following theorem.
Theorem 5.8. Let M be an R —module and P be a prime ideal of R such thatSz(I) € P and S,,(N) € P,
for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a relatively cancellation module.
(2) M is a P —relatively cancellation module.
(3) If Ais an ideal of R and B is a prime ideal of R, then AM € BM implies that A < B.
(4) If a € Rand B is a prime ideal of R, then (a)M < BM implies a € B.
(5) (AM :M) = A, forall prime ideals A of R.
(6) (AM:BM) = (A:B), where A is a prime ideal of R and B is any ideal of R.

Next we give some equivalent conditions for an R —module to be a P —weak relatively cancellation
module.
Theorem 5.9. Let M be an R —module and P be a prime ideal of R suchthatS;(/) € P and
Su(N) € P, for every ideal I of R and every submodule N of M, then the following conditions are
equivalent.
(1) M is a P —weak relatively cancellation module.
(2) If A'is an ideal of R and B is a prime ideal of R, then AM € BM implies thatA € B + ann(M).
(3) If a € Rand B is a prime ideal of R, then (a)M < BM implies a € B + ann (M).
4) (AM:M) = A+ ann (M), for all prime ideals A of R.
(5) (AM:BM) = (A + ann(M): M), where A is a prime ideal of R and B is any ideal of R.
Proof. (1) = (2). Suppose that M is a P —weak relatively cancellation module and AM < BM, where A is
an ideal of R and B is a prime ideal of R. Then we have M, is a weak relatively cancellation module and
Ap is an ideal of R, and as Sg(B) S P, we get B, is a prime ideal of Rp, so by [8, Theorem 6.6], we have
Ap € Bp +ann(M,) and as S,,(0) € P, we get (ann(M)), = ann(M,), so we get A, S (B + ann(M)),
and as Sy (B + ann(M)) € P, we getA € B + ann(M).
(2) = (3) = (4) = (5). The proof follows directly by [8, Theorem 6.6].
(5) = (1). Suppose that the condition (2) holds. To show M is a P —weak relatively cancellation module it
is enough to show that M, is weak relatively cancellation module. Let A be any prime ideal of R, and B be
any ideal of R,, then there exists a prime ideal A of R and an ideal B of R with 4 = A, and B = B,. Then
by the given condition we have (AM:BM) = (A+ ann(M):M) , then we have (AM,:BM,) =
(ApMp: BoMp) = (AM:BM), = (A+ ann(M): M), = (Ap + ann(Mp): Mp) = (A + ann (M, ): M,,), so
by [8, Theorem 6.6], we get M, is a weak relatively cancellation module and thus M is a P —weak
relatively cancellation module.

By combining Theorem 5.9 and [8, Theorem 6.6], we get the following theorem.
Theorem 5.10. Let M be an R —module and P be a prime ideal of R such thatS;(I) € Pand S,,(N) € P,
for every ideal I of R and every submodule N of M, then the following conditions are equivalent.
(1) M is a weak relatively cancellation module.
(2) M is a P —weak relatively cancellation module.
(3) If Ais an ideal of R and B is a prime ideal of R, then AM < BM implies thatA € B + ann(M).
(4) If a € Rand B is a prime ideal of R, then (a)M < BM implies a € B + ann (M).
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(6) (AM:M) = A+ ann(M), for all ideals A of R.
(6) (AM:BM) = (A + ann(M): M), where A is a prime ideal of R and B is any ideal of R.
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