Journal of University of Garmian https://doi.org/10.24271/garmian.scpas13 # On Minimal λ_{ac} -Open Sets # Bijan Davvaz , Sarhad F. Namiq Department of Mathematics Yazd University, Yazd, Iran Mathematics Department, College of Education, University of Garmian, Kurdistan-Region, Iraq #### Abstract In this paper, we defined λ_{gc} -open set by using s-operation and g-closed set, then by using λ_{gc} -open set, we define λ_{gc} -closed set. In addition we define λ_{gc} -closure of subset A of X ($\lambda_{gc}Cl(A)$) and λ_{gc} -interior of subset A of X ($\lambda_{gc}Int(A)$) by using λ_{gc} -closed set and λ_{gc} -open set respectively. Furthermore we introduce and discuss minimal λ_{gc} -open sets in topological spaces. We establish some basic properties of minimal λ_{gc} -open. We obtain an application of a theory of minimal λ_{gc} -open sets and define a λ_{gc} -locally finite space then we prove, Let X be a λ_{gc} -locally finite space and B a nonempty λ_{gc} -open set. Then there exists at least one (finite) minimal λ_{gc} -open set A such that $A \subseteq B$, where λ is semi-regular. #### 1. Introduction The study of semi open sets in topological spaces was initiated by Levine[1]. The complement of A is denoted by $X \setminus A$. The concept of operation γ was initiated by Kasahara [2]. He also introduced γ -closed graph of a function. Using this operation, Ogata[3] introduced the concept of γ -open sets and investigated the related topological properties of the associated topology τ_{γ} and τ . He further investigated general operator approaches of closed graph of mappings. Further Ahmad and Hussain[4] continued studying the properties of γ -open(γ -closed) sets. In 2009, Hussain and Ahmad [5], introduced the concept of minimal γ -open sets. In 2011[6] (resp., in 2013[7]) Khalaf and Namiq defined an operation λ called s-operation. They defined λ *-open sets [8] which is equivalent to λ -open set[6] and λ_s -open set[7] by using s-operation. They worked in operation in topology in [9-18]. In this paper, we introduce and discuss minimal λ_{gc} -open sets in topological spaces. We establish some basic properties of minimal λ_{gc} -open sets. First, we recall some definitions and results used in this paper. #### 2. Preliminaries Throughout, X denotes a topological space. Let A be a subset of X, then the closure and the interior of A are denoted by Cl(A) and Int(A) respectively. A subset A of a topological space (X, τ) is said to be semi open [1] if $A \subseteq Cl(Int(A))$ which is defined by Norman Levine. The complement of a semi open set is said to be semi closed [1]. The family of all semi open (resp. semi closed) sets in a topological space (X, τ) is denoted by $SO(X, \tau)$ or SO(X) (resp. $SC(X, \tau)$ or SC(X)). And also generalized closed (g-closed) set is defined by him which a subset A of X, $Cl(A) \subseteq G$, when ever $A \subseteq G$, for all open subset G of G [19]. #### **Definition 2.1.**[7] We consider λ as a function defined on SO(X) into P(X) and $\lambda: SO(X) \to P(X)$ is called an soperation if $V \subseteq \lambda(V)$ for each non-empty semi open set V. #### Remark 2.2. [7] It is assumed that $\lambda(\phi) = \phi$ and $\lambda(X) = X$ for any s-operation λ . ### **Definition 2.3.**[7] Let X be a topological space and $\lambda : SO(X) \to P(X)$ be an s-operation, then a subset A of X is called a λ^* -open set [8] which is equivalent to λ -open set [6] and λ_s -open set [7] if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$. The complement of a λ^* -open set is said to be λ^* -closed. The family of all λ^* -open (resp., λ^* -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda}(X, \tau)$ or $SO_{\lambda}(X)$ (resp., $SC_{\lambda}(X, \tau)$ or $SC_{\lambda}(X)$). # **Definition 2.4.**[7] A s-operation λ on X is said to be semi-regular which is equivalent to λ -regular [6] if for every semi open sets U and V of $x \in X$, there exists a semi-open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$. # 3. Minimal λ_{gc} -Open Sets # **Definition 3.1**. Let *X* be a topological space - 1) A λ^* -open[8](λ -open[6], λ_s -open[7]) subset A of X is called λ_{gc} -open if for each $x \in A$ there exists a g-closed set F such that $x \in F \subseteq A$. The complement of a λ_{gc} -open set is called λ_{gc} -closed. The family of all λ_{gc} -open (resp., λ_{gc} -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda_{gc}}(X, \tau)$ or $SO_{\lambda_{gc}}(X)$ (resp. $SC_{\lambda_{gc}}(X, \tau)$ or $SC_{\lambda_{gc}}(X)$). - 2) The λ_{gc} -closure of subset A of X ($\lambda_{gc}Cl(A)$) is the intersection of all λ_{gc} -closed sets containing A. - 3) The λ_{gc} -interior of subset A of X ($\lambda_{gc}Int(A)$) is the union of all λ_{gc} -open sets of X contained in A. - 4) Let A be a λ_{gc} -open set. Then A is called a minimal λ_{gc} -open set if ϕ and A are the only λ_{gc} -open subsets of A. # Example 3.2 Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \to P(X)$ as $\lambda(A) = A$ if $A = \{a, c\}$ and $\lambda(A) = X$ otherwise. The λ_{gc} -open sets are ϕ , $\{a, c\}$ and X. We have $\{a, c\}$ is minimal λ_{gc} -open set. ### Proposition 3.3 Let A be a nonempty λ_{gc} -open subset of a space X. If $A \subseteq \lambda_{gc}Cl(C)$, then $\lambda_{gc}Cl(A) = \lambda_{gc}Cl(C)$, for any nonempty subset C of A. **Proof.** For any nonempty subset C of A,we have $\lambda_{gc}Cl(C) \subseteq \lambda_{gc}Cl(A)$. On the other hand, by supposition we see $\lambda_{gc}Cl(A) = \lambda_{gc}Cl(\lambda_{gc}Cl(C)) = \lambda_{gc}Cl(C)$ implies $\lambda_{gc}Cl(A) \subseteq \lambda_{gc}Cl(C)$. Therefore we have $\lambda_{gc}Cl(A) = \lambda_{gc}Cl(C)$ for any nonempty subset C of A. ### Proposition 3.4 Let A be a nonempty λ_{gc} -open subset of a space X. If $\lambda_{gc}Cl(A) = \lambda_{gc}Cl(C)$, for any nonempty subset C of A, then A is a minimal λ_{gc} -open set. **Proof.** Suppose that A is not a minimal λ_{gc} -open set. Then there exists a nonempty λ_{gc} -open set B such that $B \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin B$. Then we have $\lambda_{gc} Cl(\{x\}) \subseteq X \setminus B$ and $\lambda_{gc} Cl(\{x\}) = \lambda_{gc} Cl(A)$. This contradiction proves the proposition. #### Remark 3.5 In the remainder of this section we suppose that λ is an s-regular operation defined on a topological space X. #### **Proposition 3.6** The following statements are true: - (1) If A is a minimal λ_{ac} -open set and B a λ_{gc} -open set. Then $A \cap B = \phi$ or $A \subseteq B$. - (2) If B and C are minimal λ_{gc} -open sets. Then $B \cap C = \phi$ or B = C. **Proof.**(1) Let B be a λ_{gc} -open set such that $A \cap B \neq \phi$. Since A is a minimal λ_{gc} -open set and $A \cap B \subseteq A$, we have $A \cap B = A$. Therefore $A \subseteq B$. (2) If $A \cap B \neq \phi$, then by (1), we have $B \subseteq C$ and $C \subseteq B$. Therefore, B = C. #### Proposition 3.7 Let A be a minimal λ_{gc} -open set. If x is an element of A, then $A \subseteq B$ for any λ_{gc} -open neighborhood B of x. **Proof.** Let B be a λ_{gc} -open neighborhood of x such that $A \not\subset B$. Since where λ is λ -regular operation, then $A \cap B$ is λ_{gc} -open set such that $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This contradicts our assumption that A is a minimal λ_{gc} -open set. ### Proposition 3.8 Let A be a minimal λ_{gc} -open set. Then for any element x of A, $A = \bigcap \{B: B \text{ is } \lambda_{gc}\text{-open neighborhood of } x \}$. **Proof.** By Proposition 3.4, and the fact that A is λ_{gc} -open neighborhood of x, we have $A \subseteq \bigcap \{B: B \text{ is } \lambda_{gc}\text{-open neighborhood of } x\} \subseteq A$. Therefore, the result follows. ### Proposition 3.9 If A is a minimal λ_{gc} -open set in X not containing $x \in X$. Then for any λ_{gc} -open neighborhood C of x, either $C \cap A = \phi$ or $A \subseteq C$. **Proof.** Since C is a λ_{qc} -open set, we have the result by Proposition 3.3. ### Corollary 3.10 If A is a minimal λ_{gc} -open set in X not containing $x \in X$ such that $x \notin A$. If $A_x = \bigcap \{B : B \text{ is } \lambda_{gc}\text{-open neighborhood of } x\}$. Then either $A_x \cap A = \phi$ or $A \subseteq A_x$. **Proof.** If $A \subseteq B$ for any λ_{gc} -open neighborhood B of x, then $A \subseteq \bigcap \{B: B \text{ is } \lambda_{gc}\text{-open neighborhood of } x \}$. Therefore $A \subseteq A_x$. Otherwise there exists a λ_{gc} -open neighborhood B of x such that $B \cap A = \phi$. Then we have $A_x \cap A = \phi$. ### Corollary 3.11 If A is a nonempty minimal λ_{qc} -open set of X, then for a nonempty subset C of A, $A \subseteq \lambda_{qc}Cl(C)$. **Proof.** Let C be any nonempty subset of A. Let $y \in A$ and B be any λ_{gc} -open neighborhood of y. By Proposition 3.4, we have $A \subseteq B$ and $C = A \cap C \subseteq B \cap C$. Thus we have $B \cap C \neq \phi$ and hence $y \in \lambda_{gc}Cl(C)$. This implies that $A \cap \lambda_{gc}Cl(C)$. This completes the proof. Combining Corollary 3.11 and Propositions 3.3 and 3.4, we have: ### Theorem 3.12 Let A be a nonempty λ_{qc} -open subset of space X. Then the following are equivalent: - (1) A is minimal λ_{gc} -open set, where λ is s-regular. - (2) For any nonempty subset C of A, $A \subseteq \lambda_{gc}Cl(C)$. - (3) For any nonempty subset C of A, $\lambda_{gc}Cl(A) = \lambda_{gc}Cl(C)$. # 4. Finite λ_{gc} -Open Sets In this section, we study some properties of minimal λ_{gc} -open sets in finite λ_{gc} -open sets and λ_{gc} -locally finite spaces. # Proposition 4.1 Let (X, τ) be a topological space and $\phi \neq B$ a finite λ_{gc} -open set in X. Then there exists at least one (finite) minimal λ_{gc} -open set A such that $A \subseteq B$. **Proof.** Suppose that B is a finite λ_{gc} -open set in X. Then we have the following two possibilities: - (1) B is a minimal λ_{ac} -open set. - (2) B is not a minimal λ_{ac} -open set. In case (1), if we choose B=A, then the proposition is proved. If the case (2) is true, then there exists a nonempty (finite) λ_{gc} -open set B_1 which is properly contained in B. If B_1 is minimal λ_{gc} -open, we take $A=B_1$. If B_1 is not a minimal λ_{gc} -open set, then there exists a nonempty (finite) λ_{gc} -open set B_2 such that $B_2\subseteq B_1\subseteq B$. We continue this process and have a sequence of λ_{gc} -open sets... $\subseteq B_m\subseteq \cdots \subseteq B_2\subseteq B_1\subseteq B$. Since B is a finite, this process will end in a finite number of steps. That is, for some natural number k, we have a minimal λ_{gc} -open set B_k such that $B_k=A$. This completes the proof. #### **Definition 4.2** A space X is said to be a λ_{gc} -locally finite space, if for each $x \in X$ there exists a finite λ_{gc} -open set A in X such that $x \in A$. ### Corollary 4.3 Let X be a λ_{gc} -locally finite space and B a nonempty λ_{gc} -open set. Then there exists at least one (finite) minimal λ_{gc} -open set A such that $A \subseteq B$, where λ is semi-regular. **Proof.** Since B is a nonempty set, there exists an element x of B. Since X is a λ_{gc} -locally finite space, we have a finite λ_{gc} -open set B_x such that $x \in B_x$. Since $B \cap B_x$ is a finite λ_{gc} -open set, we get a minimal λ_{gc} -open set A such that $A \subseteq B \cap B_x \subseteq B$ by Proposition 4.1. ### Proposition 4.4 Let X be a space and for any $\alpha \in I$, B_{α} a λ_{gc} -open set and $\phi \neq A$ a finite λ_{gc} -open set. Then $A \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a finite λ_{gc} -open set, where λ is *semi*-regular. **Proof.** We see that there exists an integer n such that $A \cap (\bigcap_{\alpha \in I} B_{\alpha}) = A \cap (\bigcap_{i=1}^{n} B_{\alpha i})$ and hence we have the result. Using Proposition 4.4, we can prove the following: #### Theorem 4.5 Let X be a space and for any $\alpha \in I$, B_{α} a λ_{gc} -open set and for any $\beta \in J$, B_{β} a nonempty finite λ_{gc} -open set. Then $(\bigcup_{\beta \in I} B_{\beta}) \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a λ_{gc} -open set, where λ is semi-regular. # 5. More Properties Let A be a nonempty finite λ_{gc} -open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if λ is semi-regular, then there exists a natural number m such that $\{A_1, A_2, ..., A_m\}$ is the class of all minimal λ_{gc} -open sets in A satisfying the following two conditions: - (1) For any ι , n with $1 \le \iota$, $n \le m$ and $\iota \ne n$, $A_{\iota} \cap A_{n} = \phi$. - (2) If C is a minimal λ_{qc} -open set in A, then there exists ι with $1 \subseteq \iota \subseteq m$ such that $C = A_{\iota}$. #### Theorem 5.1 Let X be a space and $\phi \neq A$ a finite λ_{gc} -open set such that A is not a minimal λ_{gc} -open set. Let $\{A_1,A_2,\ldots,A_m\}$ be a class of all minimal λ_{gc} -open sets in A and $y\in A\setminus (A_1\cup A_2\cup\ldots\cup A_m)$. Define $A_y=\bigcap\{B:B\text{ is }\lambda_{gc}\text{-open neighborhood of }x\}$. Then there exists a natural number $k\in\{1,2,3,\ldots,m\}$ such that A_k is contained in A_y , where λ is semi-regular. **Proof.** Suppose on the contrary that for any natural number $k \in \{1,2,3,...,m\}$, A_k is not contained in A_y . By Corollary 3.7, for any minimal λ_{gc} -open set A_k in $A, A_k \cap A_y = \phi$. By Proposition 4.4, $\phi \neq A_y$ is a finite λ_{gc} -open set. Therefore by Proposition 4.1, there exists a minimal λ_{gc} -open set C such that $C \subseteq A_y$. Since $C \subseteq A_y \subseteq A$, we have C is a minimal λ_{gc} -open set in C. By supposition, for any minimal C is a minimal C is a minimal C in C is a minimal C in is a minimal C in #### **Proposition 5.2** Let X be a space and $\phi \neq A$ be a finite λ_{gc} -open set which is not a minimal λ_{gc} -open set. Let $\{A_1,A_2,...,A_m\}$ be a class of all minimal λ_{gc} -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1,2,3,...,m\}$, such that for any λ_{gc} -open neighborhood B_y of y,A_k is contained in B_y , where λ is λ -regular. **Proof.** This follows from Theorem 5.1, as $\bigcap \{B: B \text{ is } \lambda_{ac}\text{-open of } y\} \subseteq B_{y}$. Hence the proof. #### Theorem 5.3 Let X be a space and $\phi \neq A$ be a finite λ_{gc} -open set which is not a minimal λ_{gc} -open set. Let $\{A_1, A_2, ..., A_m\}$ be the class of all minimal λ_{gc} -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, 3, ..., m\}$, such that $y \in \lambda_{gc} Cl(A_k)$. where λ is λ -regular. **Proof.** It follows from Proposition 5.2, that there exists a natural number $k \in \{1,2,3,...,m\}$ such that $A_k \subseteq B$ for any λ_{gc} -open neighborhood B of y. Therefore $\phi \neq A_k \cap A_k \subseteq A_k \cap B$ implies $y \in \lambda_{gc} Cl(A_k)$. This completes the proof. ### Proposition 5.4 Let $\phi \neq A$ be a finite λ_{gc} -open set in a space X and for each $k \in \{1,2,3,...,m\}$, A_k is a minimal λ_{gc} -open set in A. If the class $\{A_1,A_2,...,A_m\}$ contains all minimal λ_{gc} -open sets in A, then for any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda_{gc}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, where λ is semi-regular. **Proof.** If A is a minimal λ_{gc} -open set, then this is the result of Theorem 3.11 (2). Otherwise, when A is not a minimal λ_{gc} -open set. If x is any element of $A\setminus (A_1\cup A_2\cup ...\cup A_m)$, then by Theorem 5.3, $x\in \lambda_{gc}Cl(A_1)\cup \lambda_{gc}Cl(A_2)\cup\cup \lambda_{gc}Cl(A_m)$. Therefore, by Theorem 3.11(3), we obtain that $A\subseteq \lambda_{gc}Cl(A_1)\cup \lambda_{gc}Cl(A_2)\cup\cup \lambda_{gc}Cl(A_m)=\lambda_{gc}Cl(B_1)\cup \lambda_{gc}Cl(B_2)$ $\cup\cup \lambda_{gc}Cl(B_m)=\lambda_{gc}Cl(B_1\cup B_2\cup B_3\cup ...\cup B_m)$. # Proposition 5.5 Let $\phi \neq A$ be a finite λ_{gc} -open set and A_k is a minimal λ_{gc} -open set in A, for each $k \in \{1,2,3,\ldots,m\}$. If for any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda_{gc} Cl(B_1 \cup B_2 \cup B_3 \cup \ldots \cup B_m)$ then $\lambda_{gc} Cl(A) = \lambda_{gc} Cl(B_1 \cup B_2 \cup B_3 \cup \ldots \cup B_m)$. **Proof.** For any $\phi \neq B_k \subseteq A_k$ with $k \in \{1,2,3,...,m\}$, we have $\lambda_{gc}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \subseteq \lambda_{gc}Cl(A)$. Also, we have $\lambda_{gc}Cl(A) \subseteq \lambda_{gc}Cl(B_1) \cup \lambda_{gc}Cl(B_2) \cup ... \cup \lambda_{gc}Cl(B_m) = \lambda_{gc}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. Therefore, $\lambda_{gc}Cl(A) = \lambda_{gc}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$ for any nonempty subset B_k of A_k with $k \in \{1,2,3,...,m\}$. ### **Proposition 5.6** Let $\phi \neq A$ be a finite λ_{gc} -open set and for each $k \in \{1,2,3,\ldots,m\}$, A_k is a minimal λ_{gc} -open set in A. If for any $\phi \neq B_k \subseteq A_k$, $\lambda_{gc} Cl(A) = \lambda_{gc} Cl(B_1 \cup B_2 \cup B_3 \cup \ldots \cup B_m)$, then the class $\{A_1,A_2,\ldots,A_m\}$ contains all minimal λ_{gc} -open sets in A. **Proof.** Suppose that C is a minimal λ_{gc} -open set in A and $C \neq A_k$ for $k \in \{1,2,3,...,m\}$. Then we have $C \cap \lambda_{gc}Cl(A_k) = \phi$ for each $k \in \{1,2,3,...,m\}$. It follows that any element of C is not contained in $\lambda_{gc}Cl(A_1 \cup A_2 \cup ... \cup A_m)$. This is a contradiction to the fact that $C \subseteq A \subseteq \lambda_{gc}Cl(A) = \lambda_{gc}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. This completes the proof. Combining Propositions 5.4, 5.5 and 5.6, we have the following theorem: #### Theorem 57 Let A be a nonempty finite λ_{gc} -open set and A_k a minimal λ_{gc} -open set in A for each $k \in \{1,2,3,...,m\}$. Then the following three conditions are equivalent: - (1) The class $\{A_1, A_2, ..., A_m\}$ contains all minimal λ_{qc} -open sets in A. - (2) For any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda_{gc} Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. - (3) For any $\phi \neq B_k \subseteq A_k$, $\lambda_{qc} Cl(A) = \lambda_{qc} Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, where λ is semi-regular. # References - 1. Levine, N., Semi-open sets and semi-continuity in topological spaces. Amer. Math.Monthly, 1963. **70**(1): p. 36-41. - 2. Kasahara, S., Operation-Compact Spaces. Math. Japon, 1979(24): p. 97-105. - Ogata, H., Operations on Topological Spaces and Associated Topology. Math. Japon, 1991. 36(1): p. 175-184. - 4. Ahmad, B. and S. Hussain, *Properties of γ-Operations on Topological Spaces*. Aligarh Bull.Math, 2003. **1**(22): p. 45-51. - 5. Hussain, S. and B. Ahmad, On Minimal γ -Open Sets. Eur. J. Pure Appl. Maths, 2009. 3(2): p. 338-351. - 6. Khalaf, A.B. and S.F. Namiq, *New types of continuity and separation axiom based operation in topological spaces.* M. Sc. Thesis, University of Sulaimani, 2011. - 7. Khalaf, A.B. and S.F. Namiq, Lammda sub c-Open Sets and Lammda sub c-Separation Axioms in Topological Spaces. Journal of Advanced Studies in Topology, 2013. 4(1): p. 150-158. - 8. Namiq, S.F., Lammda-R0 and Lammda-R1 Spaces. Journal of Garmyan University, 2014. 4(3). - 9. F.Namiq, S., Contra \(\((\lambda, \chi) \) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\) - 10. B.Khalaf, A. and S.F. Namiq, *Generalized Lammda-Closed Sets and (Lammda, Gamma)*^*-Continuous Journal of Garmyan University, 2017: p. 2310-0087. - 11. B.Khalaf, A. and S.F. Namiq, λ _ βc -Connected Spaces and λ _ βc -Components. Journal of Garmyan University, 2017. - 12. Khalaf, A.B., H.M. Darwesh, and S.F. Namiq, λ _c-Connected Space Via λ _c-Open Sets. Journal of Garmyan University, 2017. - 13. Namiq, S.F., \(\lambda_sc-open sets and topological properties\). Journal of Garmyan University, 2014. - Namiq, S.F., λ_c-Separation Axioms Via λ_c-open sets. International Journal of Scientific & Engineering Research May-2017. 8. - 15. Namiq, S.F., \(\lambda\) sc-Connected Spaces Via \(\lambda\) sc-Open Sets. Journal of Garmyan University, 2017. - 16. Darwesh, H.M., S.F. Namiq, and W.K. Kadir, Maximal λc-Open Sets. ICNS-2016, 2017. - 17. Namiq, S.F., λ-Connected Spaces Via λ-Open Sets. Journal of Garmyan University, 2015. - 18. Darwesh, H.M. and S.F. Namiq, On Minimal $\lambda \beta c$ -Open Sets Journal of Garmyan University, 2017. - 19. N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo 19 (1970) 89–96.