Matheson, G. L., Herbst, W. A., & Halt, P. H. (1949). Characteristics of Fluid-Solid
Systems. Industrial Engineering Chemical, 41, 1099.
Richardson, J.F., & Zaki, W.N. (1954).Sedimentation and fluidization: part I. Trans.
Inst. Chem. Eng. 32, 35-53.
Hartge, E., & Werther, J. (1986 ). Analysis of the local structure of the two-phase flow
in a fast fluidized bed. In, Circulating Fluidized Bed Technology. Chemical
Engineering Technology, 58, 153-160.
Bürger, R., &Wendland, W.L. (2001). Sedimentation and suspension flows: historical
perspective and some recent developments. Journal Engineering Mathematic, 41 (2),
101–116.
Hirano , Y., Kai, T., Tsutsui, T., & Nakazato, T. (2013). Decrease in the fluidization
quality of fluidized beds containing binary mixtures of different catalyst particles.
Chemical Engineering Science, 96 (7), 98-105.
Tsuji, Y., Kawaguchi, T., & Tanaka, T. (1993). Discrete particle simulation of two
dimensional fluidized beds. Powder Technology, 77, 79–87.
Hoomans, B.P.B., Kuipers, J.A.M., Briels, W.J., & Van Swaaij, W.P.M. (1996).
Discrete particle simulation of bubble and slug formation in a two-dimensional gas-
fluidized bed: a hard- sphere approach. Chemical Engineering Science, 51, 99-118.
Yu, A.B., & Xu, B.H. (2003). Particle-scale modelling of gas-solid flow in fluidisation.
J. Chem. Technol. Biotechnol, 78, 111-121.
Zhu, H.P., Zhou, Z.Y., Yang, R.Y., & Yu, A.B. (2008). Discrete particle simulation of
particulate systems: a review of major applications and findings. Chemical
Engineering Science, 63, 5728-5770.
Chavan , P. V., Thombare, M. A., Bankar, S. B., Kalaga, D. V., & Patil-Shinde, V. A.
(2018). Novel multistage solid-liquid circulating fluidized bed: Hydrodynamic
characteristics. Particuology, 38, 134-142.
Di Maio, F. P., & Di Renzo, A. (2007). DEM-CFD Simulations of fluidized beds with
application in mixing dynamics. KONA Journal, 25, 205-216.
Gidaspow, D. (1994). Multiphase flow and fluidization, Academic Press, NewYork.
Apostolou, K., & Hrymak, A.N. (2008). Discrete element simulation of liquid-particle
flows. Computers and Chemical Engineering, 32, 841-856.
Wang, J.W., van der Hoef, M.A., & Kuipers, J.A.M. (2010). CFD study of the minimum
bubbling velocity of Geldart A particles in gas-fluidized beds. Chemical Engineering
Science, 65, 3772-3785.
Chu, K.W., Kuang, S.B., Zhou, Z.Y., Yu A.B. (2018). Model A vs. Model B in the
modelling of particle-fluid flow. Powder Technology, 329, 47-54.
Al-Arkawazia, S., Marieb, C., Benhabibb, K., & Coorevits, P. (2017). Modeling the
hydrodynamic forces between fluid-granular medium by coupling DEM-CFD.
Chemical Engineering Research and Design, 117, 439-447.
Deen, N.G., Van Sint Annaland, M., Van der Hoef, M.A., & Kuipers, J.A.M. (2007).
Review of discrete particle modeling of fluidized beds. Chemical Engineering
Science, 62, 28-44.
Fortin, J., & De Saxcé, G. (1999). Modélisation numérique des milieux granulaires par
l’approche du bi-potentiel. C. R. Academic Science, 327,721–724.
Archambeau, F., Méchitoua, N., & Sakiz, M. (2004). Code Saturne: a finite volume
method for the computation of turbulent incompressible flow-industrial applications.
Int. J. Finite, 1 (1), 1-62.
Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering
applications. AIAA Journal, 32(8), 1598-1605.
Mohammadi, B., & Pironneau, O. (1994). Analysis of the k-ε turbulence model, J. Wiley
& Sons.
Kafui, D.K., Johnson, S., Thornton, C., & Seville, J.P.K. (2011). Parallelization of a
Lagrangian–Eulerian DEM/CFD code for application to fluidized beds. Powder
Technology, 207 (1-3), 270–278.
Helland, E. , Occelli, R., &Tadrist, L. (2000). Numerical study of cluster formation in a
gas–particle circulating fluidized bed. Powder Technology, 110, 210–221.
Kl0Stokes, G.G. (1901). Mathematical and Physical Papers. Cambridge University
Press, Cambridge.
Brown, P., & Lawler, D. (2003). Sphere drag and settling velocity revisited.
Journal Environment Engineering, 129 (3), 222-231.
Gilbilaro, L.G. (2001). Fluidization-Dynamics: The Formulation and Applications of a
Predictive Theory for the Fluidized State. Butterworth–Heinemann.
Sherko Ahmad Flamarz (2017). Comparison of porosity models for fluidized beds.
Kurdistan Journal of Applied Research, 2 (1), 74-83.
Helland, E., Bournot, H., Occelli, R., & Tadrist, L. (2007). Drag reduction and cluster
formation in a circulating fluidized bed. Chemical Engineering Science, 62, 148-158.