ttp://jgu.garmian.edu.krd

https://doi.org/10.24271/garmian.338

On Minimal $\lambda_{\alpha c}$ -Open Sets

Sarhad F. Namiq

Mathematics Department, College of Education, University of Garmian, Kurdistan Region, Iraq Email: sarhad.faiq@garmian.edu.krd

Abstract

In this paper, we introduce and discuss minimal $\lambda_{\alpha c}$ -open sets in topological spaces. We establish some basic properties of minimal $\lambda_{\alpha c}$ -open. We obtain an application of a theory of minimal $\lambda_{\alpha c}$ -open sets and we defined a $\lambda_{\alpha c}$ -locally finite space.

1. Introduction

The study of semi open sets in topological spaces was initiated by Levine[1]. The complement of A is denoted by $X \setminus A$. In the space (X, τ) , a subset A is said to be α -open if $A \subseteq Int(Cl(Int(A)))$. The family of all b-open sets of (X, τ) is denoted by [2] BO(X). The complement of α -open is called α -closed. The concept of operation γ was initiated by Kasahara [3]. He also introduced γ -closed graph of a function. Using this operation, Ogata[4] introduced the concept of γ -open sets and investigated the related topological properties of the associated topology τ_{γ} and τ . He further investigated general operator approaches of closed graph of mappings. Further Ahmad and Hussain[5] continued studying the properties of γ -open(γ -closed) sets. In 2009, Hussainand Ahmad [6], introduced the concept of minimal γ -open sets. In 2011[7] (resp., in 2013[8]) Khalaf and Namiq defined an operation λ called s-operation. They defined λ^* -open sets [9] which is equivalent to λ -open set[7] and λ_s - open set[8] by using s-operation. They work in operation in topology in [10-22]. They defined $\lambda_{\beta c}$ open set by using s-operation and β -closed set and also investigated several properties of $\lambda_{\beta c}$ -derived, $\lambda_{\beta c}$ -interior and $\lambda_{\beta c}$ -closure points in topological spaces.

In this paper, we introduce and discuss minimal $\lambda_{\alpha c}$ -open sets in topological spaces. We establish some basic properties of minimal $\lambda_{\alpha c}$ -open sets and provide an example to illustrate that minimal $\lambda_{\alpha c}$ -open sets are independent of minimal open sets. First, we recall some definitions and results used in this paper.

2. Preliminaries

Throughout, X denotes a topological space. Let A be a subset of X, then the closure and the interior of A are denoted by Cl(A) and Int(A) respectively. A subset A of a topological space (X, τ) is said to be semi open $[\underline{1}]$ if $A \subseteq Cl(Int(A))$. The complement

of a semi open set is said to be semi closed [1]. The family of all semi open (resp. semi closed) sets in a topological space (X,τ) is denoted by $SO(X,\tau)$ or SO(X) (resp. $SC(X,\tau)$ or SC(X)). We consider λ as a function defined on SO(X) into P(X) and $\lambda: SO(X) \to P(X)$ is called an s-operation if $V \subseteq \lambda(V)$ for each non-empty semi open set V. It is assumed that $\lambda(\phi) = \phi$ and $\lambda(X) = X$ for any s-operation λ . Let X be a topological space and $\lambda: SO(X) \to P(X)$ be an s-operation, then a subset A of X is called a λ^* -open set [9]which is equivalent to λ -open set[7] and λ_S -open set [8] if for each $x \in A$ there exists a semi open set U such that $x \in U$ and $\lambda(U) \subseteq A$.

The complement of a λ^* -open set is said to be λ^* -closed. The family of all λ^* -open (resp., λ^* -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda}(X, \tau)$ or $SO_{\lambda}(X)$ (resp., $SC_{\lambda}(X, \tau)$ or $SC_{\lambda}(X)$).

Definition 2.1.A λ^* -open[9](λ -open[7], λ_s -open[8]) subset A of a topological space X is called $\lambda_{\beta c}$ -open [23] if for each $x \in A$ there exists a β -closed set F such that $x \in F \subseteq A$. The complement of a $\lambda_{\beta c}$ -open set is called $\lambda_{\beta c}$ -closed[23]. The family of all $\lambda_{\beta c}$ -open (resp., $\lambda_{\beta c}$ -closed) subsets of a topological space (X, τ) is denoted by $SO_{\lambda_{\beta c}}(X, \tau)$ or $SO_{\lambda_{\beta c}}(X)$ (resp. $SC_{\lambda_{\beta c}}(X, \tau)$ or $SC_{\lambda_{\beta c}}(X)$) [23].

We get the following results in [23]

Proposition 2.2. For a topological space X, $SO_{\lambda_{Bc}}(X) \subseteq SO_{\lambda}(X) \subseteq SO(X)$.

The following example shows that the converse of the above proposition may not be true in general.

Example 2.3. Let $X = \{a, b, c\}$, and $\tau = \{\phi, \{a\}, X\}$. We define an s-operation $\lambda : SO(X) \longrightarrow P(X)$ as $\lambda(A) = A$ if $b \in A$ and $\lambda(A) = X$ otherwise. Here, we have $\{a, c\}$ is semi open but it is not λ^* -open. And also $\{a, b\}$ is λ^* -open set but it is not $\lambda_{\alpha c}$ -open.

Definition 2.4. An s-operation λ on X is said to be s-regular which is equivalent to λ -regular [8]if for every semi open sets U and V of $x \in X$, there exists a semi open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$.

Definition 2.5. Let A be a subset of X. Then:

- (1) The $\lambda_{\beta c}$ -closure of A ($\lambda_{\beta c}Cl(A)$) is the intersection of all $\lambda_{\beta c}$ -closed sets containing A.
- (2) The $\lambda_{\beta c}$ -interior of A ($\lambda_{\beta c}Int(A)$) is the union of all $\lambda_{\beta c}$ -open sets of X contained in A.

Proposition 2.6. For each point $x \in X$, $x \in \lambda_{\beta c}Cl(A)$ if and only if $V \cap A \neq \phi$ for every $V \in SO_{\lambda_{\beta c}}(X)$ such that $x \in V$.

Proposition 2.7.Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be any collection of $\lambda_{\beta c}$ -open sets in a topological space (X,τ) , then $\bigcup_{{\alpha}\in I}A_{\alpha}$ is a $\lambda_{\beta c}$ -open set.

Proposition 2.8.Let λ bean s-regular s-operation. If A and B are $\lambda_{\beta c}$ -open sets in X, then $A \cap B$ is also a $\lambda_{\beta c}$ -open set.

The proof of the following two propositions are in [24].

Proposition 2.9. Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be any collection of λ^* -open sets in a topological space (X,τ) , then $\bigcup_{{\alpha}\in I}A_{\alpha}$ is a λ^* -open set.

Proposition 2.10. Let λ be semi-regular operation. If A and B are λ^* -open sets in X, then $A \cap B$ is also a λ^* -open set.

Definition 2.11. A λ^* -open[9](λ -open[7], λ_s -open[8]) subset A of a topological space X is called $\lambda_{\alpha c}$ -open if for each $x \in A$ there exists a b-closed set F such that $x \in F \subseteq A$. The complement of a $\lambda_{\alpha c}$ -open set is called $\lambda_{\alpha c}$ -closed. The family of all $\lambda_{\alpha c}$ -open (resp., $\lambda_{\alpha c}$ -closed) subsets of a topological space(X, T) is denoted by $SO_{\lambda_{\alpha c}}(X,T)$ or $SO_{\lambda_{\alpha c}}(X)$ (resp. $SC_{\lambda_{\alpha c}}(X,T)$ or $SC_{\lambda_{\alpha c}}(X)$).

Proposition 2.12. For a topological space X, $SO_{\lambda_{\alpha c}}(X) \subseteq SO_{\lambda}(X) \subseteq SO(X)$.

Proof. Obvious.

The following example shows that the converse of the above proposition may not be true in general.

Example 2.13. In Example 2.3, we have $\{a, c\}$ is semi open but it is not λ^* -open. And also $\{a, b\}$ is λ^* -open set but it is not $\lambda_{\alpha c}$ -open.

Definition 2.14. An s-operation λ on X is said to be s-regular which is equivalent to λ -regular [8] if for every semi open sets U and V of $x \in X$, there exists a semi open set W containing x such that $\lambda(W) \subseteq \lambda(U) \cap \lambda(V)$.

Definition 2.15. Let *A* be a subset of *X*. Then:

- (3) The $\lambda_{\alpha c}$ -closure of A ($\lambda_{\alpha c}Cl(A)$) is the intersection of all $\lambda_{\alpha c}$ -closed sets containing A.
- (4) The $\lambda_{\alpha c}$ -interior of A ($\lambda_{\alpha c}Int(A)$) is the union of all $\lambda_{\alpha c}$ -open sets of X contained in A.

Proposition 2.16. For each point $x \in X$, $x \in \lambda_{\alpha c} Cl(A)$ if and only if $V \cap A \neq \phi$ for every $V \in SO_{\lambda_{\alpha c}}(X)$ such that $x \in V$.

Proof. Obvious

Proposition 2.17. Let $\{A_{\alpha}\}_{{\alpha}\in I}$ be any collection of $\lambda_{\alpha c}$ -open sets in a topological space (X,τ) , then $\bigcup_{{\alpha}\in I}A_{\alpha}$ is a $\lambda_{\alpha c}$ -open set.

Proof. Obvious

Proposition 2.18. Let λ bean s-regular s-operation. If A and B are $\lambda_{\alpha c}$ -open sets in X, then $A \cap B$ is also a $\lambda_{\alpha c}$ -open set.

Proof. Obvious

3. Minimal $\lambda_{\alpha c}$ -Open Sets

Definition 3.1.Let X be a space and $A \subseteq X$ be a $\lambda_{\alpha c}$ -open set. Then A is called a minimal $\lambda_{\alpha c}$ -open set if ϕ and A are the only $\lambda_{\alpha c}$ -open subsets of A.

Example 3.2. Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda : SO(X) \to P(X)$ as $\lambda(A) = A$ if $A = \{a, c\}$ and $\lambda(A) = X$ otherwise. The $\lambda_{\alpha c}$ -open sets are ϕ , $\{a, c\}$ and X. We have $\{a, c\}$ is minimal $\lambda_{\alpha c}$ -open set.

Proposition 3.3. Let A be a nonempty $\lambda_{\alpha c}$ -open subset of a space X. If $A \subseteq \lambda_{\alpha c}Cl(C)$, then $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(C)$, for any nonempty subset C of A.

Proof. For any nonempty subset C of A, we have $\lambda_{\alpha c}Cl(C) \subseteq \lambda_{\alpha c}Cl(A)$. On the other hand, by supposition we see $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(\lambda_{\alpha c}Cl(C)) = \lambda_{\alpha c}Cl(C)$ implies $\lambda_{\alpha c}Cl(A) \subseteq \lambda_{\alpha c}Cl(C)$.

Therefore we have $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(C)$ for any nonempty subset C of A.

Proposition 3.4. Let A be a nonempty $\lambda_{\alpha c}$ -open subset of a space X. If $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(C)$, for any nonempty subset C of A, then A is a minimal $\lambda_{\alpha c}$ -open set.

Proof. Suppose that A is not a minimal $\lambda_{\alpha c}$ -open set. Then there exists a nonempty $\lambda_{\alpha c}$ -open set B such that $B \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin B$. Then we have $\lambda_{\alpha c}Cl(\{x\}) \subseteq X \setminus B$ implies that $\lambda_{\alpha c}Cl(\{x\}) = \lambda_{\alpha c}Cl(A)$. This contradiction proves the proposition.

Remark 3.5. In the remainder of this section we suppose that λ is an s-regular operation defined on a topological space X.

Proposition 3.6. The following statements are true:

- (1) If A is a minimal $\lambda_{\alpha c}$ -open set and B a $\lambda_{\alpha c}$ -open set. Then $A \cap B = \phi$ or $A \subseteq B$.
- (2) If B and C are minimal $\lambda_{\alpha c}$ -open sets. Then $B \cap C = \phi$ or B = C.

Proof.(1) Let *B* be a $\lambda_{\alpha c}$ -open set such that $A \cap B \neq \phi$. Since *A* is a minimal $\lambda_{\alpha c}$ -open set and $A \cap B \subseteq A$, we have $A \cap B = A$. Therefore $A \subseteq B$.

(2) If $A \cap B \neq \phi$, then by (1), we have $B \subseteq C$ and $C \subseteq B$. Therefore, B = C. **Proposition 3.7.** Let A be a minimal $\lambda_{\alpha c}$ -open set. If x is an element of A, then $A \subseteq B$ for any $\lambda_{\alpha c}$ -open neighborhood B of x.

Proof. Let *B* be a $\lambda_{\alpha c}$ -open neighborhood of *x* such that $A \not\subset B$. Since where λ is λ -regular operation, then $A \cap B$ is $\lambda_{\alpha c}$ -open set such that $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This contradicts our assumption that *A* is a minimal $\lambda_{\alpha c}$ -open set.

Proposition 3.8. Let A be a minimal $\lambda_{\alpha c}$ -open set. Then for any element x of A, $A = \bigcap \{B: B \text{ is } \lambda_{\alpha c}\text{-open neighborhood of } x\}$.

Proof. By Proposition 3.4, and the fact that A is $\lambda_{\alpha c}$ -open neighborhood of x, we have $A \subseteq \bigcap \{B: B \text{ is } \lambda_{\alpha c}\text{-open neighborhood of } x\} \subseteq A$. Therefore, the result follows.

Proposition 3.9. If *A* is a minimal $\lambda_{\alpha c}$ -open set in *X* not containing $x \in X$. Then for any $\lambda_{\alpha c}$ -open neighborhood *C* of *x*, either $C \cap A = \phi$ or $A \subseteq C$.

Proof. Since C is a $\lambda_{\alpha c}$ -open set, we have the result by Proposition 3.3.

Corollary 3.10. If A is a minimal $\lambda_{\alpha c}$ -open set in X not containing $x \in X$ such that $x \notin A$. If $A_x = \bigcap \{B: B \text{ is } \lambda_{\alpha c}\text{-open neighborhood of } x \}$. Then either $A_x \cap A = \phi$ or $A \subseteq A_x$.

Proof. If $A \subseteq B$ for any $\lambda_{\alpha c}$ -open neighborhood B of x, then $A \subseteq \bigcap \{B: B \text{ is } \lambda_{\alpha c}\text{-open neighborhood of } x \}$. Therefore $A \subseteq A_x$. Otherwise there exists a $\lambda_{\alpha c}$ -open neighborhood B of x such that $B \cap A = \phi$. Then we have $A_x \cap A = \phi$.

Corollary 3.11.If *A* is a nonempty minimal $\lambda_{\alpha c}$ -open set of *X*, then for a nonempty subset C of A, $A \subseteq \lambda_{\alpha c}Cl(C)$.

Proof. Let C be any nonempty subset of A. Let $y \in A$ and B be any $\lambda_{\alpha c}$ -open neighborhood of y. By Proposition 3.4, we have $A \subseteq B$ and $C = A \cap C \subseteq B \cap C$. Thus we have $B \cap C \neq \phi$ and hence $y \in \lambda_{\alpha c}Cl(C)$. This implies that $A \cap \lambda_{\alpha c}Cl(C)$. This completes the proof.

Combining Corollary 3.11 and Propositions 3.3 and 3.4, we have:

Theorem 3.11.Let *A* be a nonempty $\lambda_{\alpha c}$ -open subset of space *X*. Then the following are equivalent:

- (1) A is minimal $\lambda_{\alpha c}$ -open set, where λ is s-regular.
- (2) For any nonempty subset C of A, $A \subseteq \lambda_{\alpha c} Cl(C)$.
- (3) For any nonempty subset C of A, $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(C)$.

4. Finite $\lambda_{\alpha c}$ **-Open Sets**

In this section, we study some properties of minimal $\lambda_{\alpha c}$ -open sets in finite $\lambda_{\alpha c}$ -open sets and $\lambda_{\alpha c}$ -locally finite spaces.

Proposition 4.1. Let (X, τ) be a topological space and $\phi \neq B$ a finite $\lambda_{\alpha c}$ -open set in X. Then there exists at least one (finite) minimal $\lambda_{\alpha c}$ -open set A such that $A \subseteq B$.

Proof. Suppose that *B* is a finite $\lambda_{\alpha c}$ -open set in *X*. Then we have the following two possibilities:

- (1) B is a minimal $\lambda_{\alpha c}$ -open set.
- (2) B is not a minimal b-open set.

In case (1), if we choose B=A, then the proposition is proved. If the case (2) is true, then there exists a nonempty (finite) $\lambda_{\alpha c}$ -open set B_1 which is properly contained in B. If B_1 is minimal $\lambda_{\alpha c}$ -open, we take $A=B_1$. If B_1 is not a minimal $\lambda_{\alpha c}$ -open set, then there exists a nonempty (finite) $\lambda_{\alpha c}$ -open set B_2 such that $B_2 \subseteq B_1 \subseteq B$. We continue this process and have a sequence of $\lambda_{\alpha c}$ -open sets... $\subseteq B_m \subseteq \cdots \subseteq B_2 \subseteq B_1 \subseteq B$. Since B is a finite, this process will end in a finite number of steps. That is, for some natural number k, we have a minimal $\lambda_{\alpha c}$ -open set B_k such that $B_k = A$. This completes the proof.

Definition 4.2. A space *X* is said to be a $\lambda_{\alpha c}$ -locally finite space, if for each $x \in X$ there exists a finite $\lambda_{\alpha c}$ -open set *A* in *X* such that $x \in A$.

Corollary 4.3. Let X be a $\lambda_{\alpha c}$ -locally finite space and B a nonempty $\lambda_{\alpha c}$ -open set. Then there exists at least one (finite) minimal $\lambda_{\alpha c}$ -open set A such that $A \subseteq B$, where λ is semi-regular.

Proof. Since B is a nonempty set, there exists an element x of B. Since X is a $\lambda_{\alpha c}$ -locally finite space, we have a finite $\lambda_{\alpha c}$ -open set B_x such that $x \in B_x$. Since $B \cap B_x$ is a finite $\lambda_{\alpha c}$ -open set, we get a minimal $\lambda_{\alpha c}$ -open set A such that $A \subseteq B \cap B_x \subseteq B$ by Proposition 4.1.

Proposition 4.4. Let X be a space and for any $\alpha \in I$, B_{α} a $\lambda_{\alpha c}$ -open set and $\phi \neq A$ a finite $\lambda_{\alpha c}$ -open set. Then $A \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a finite $\lambda_{\alpha c}$ -open set, where λ is *semi*-regular.

Proof. We see that there exists an integer n such that $A \cap (\bigcap_{\alpha \in I} B_{\alpha}) = A \cap (\bigcap_{i=1}^{n} B_{\alpha i})$ and hence we have the result.

Using Proposition 4.4, we can prove the following:

Theorem 4.5.Let X be a space and for any $\alpha \in I$, B_{α} a $\lambda_{\alpha c}$ -open set and for any $\beta \in J$, B_{β} a nonempty finite $\lambda_{\alpha c}$ -open set. Then $(\bigcup_{\beta \in J} B_{\beta}) \cap (\bigcap_{\alpha \in I} B_{\alpha})$ is a $\lambda_{\alpha c}$ -open set, where λ is semi-regular.

5. More Properties

Let A be a nonempty finite $\lambda_{\alpha c}$ -open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if λ is semi-regular, then there exists a natural number m such that $\{A_1, A_2, ..., A_m\}$ is the class of all minimal $\lambda_{\alpha c}$ -open sets in A satisfying the following two conditions:

- (1) For any ι , n with $1 \le \iota$, $n \le m$ and $\iota \ne n$, $A_{\iota} \cap A_{n} = \phi$.
- (2) If C is a minimal $\lambda_{\alpha c}$ -open set in A, then there exists ι with $1 \subseteq \iota \subseteq m$ such that $C = A_{\iota}$.

Theorem 5.1.Let X be a space and $\phi \neq A$ a finite $\lambda_{\alpha c}$ -open set such that A is not a minimal $\lambda_{\alpha c}$ -open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal $\lambda_{\alpha c}$ -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Define $A_y = \bigcap \{B: B \text{ is } \lambda_{\alpha c}\text{-open neighborhood of } x \}$. Then there exists a natural number $k \in \{1,2,3,...,m\}$ such that A_k is contained in A_y , where λ is semi-regular.

Proof. Suppose on the contrary that for any natural number $k \in \{1,2,3,...,m\}$, A_k is not contained in A_y . By Corollary 3.7, for any minimal $\lambda_{\alpha c}$ -open set A_k in $A, A_k \cap A_y = \phi$. By Proposition 4.4, $\phi \neq A_y$ is a finite $\lambda_{\alpha c}$ -open set. Therefore by Proposition 4.1, there exists a minimal $\lambda_{\alpha c}$ -open set C such that $C \subseteq A_y$. Since $C \subseteq A_y \subseteq A$, we have C is a minimal $\lambda_{\alpha c}$ -open set in A. By supposition, for any minimal $\lambda_{\alpha c}$ -open set A_k , we have $A_k \cap C \subseteq A_k \cap A_y = \phi$. Therefore, for any natural number $k \in \{1,2,3,...,m\}$, $C \neq A_k$. This contradicts our assumption. Hence the proof.

Proposition 5.2. Let X be a space and $\phi \neq A$ be a finite $\lambda_{\alpha c}$ -open set which is not a minimal $\lambda_{\alpha c}$ -open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal $\lambda_{\alpha c}$ -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1,2,3,...,m\}$, such that for any $\lambda_{\alpha c}$ -open neighborhood B_y of y, A_k is contained in B_y , where λ is λ -regular.

Proof. This follows from Theorem 5.1, as $\bigcap \{B:B \text{ is } \lambda_{\alpha c}\text{-open of } y\} \subseteq B_y$. Hence the proof.

Theorem 5.3. Let X be a space and $\phi \neq A$ be a finite $\lambda_{\alpha c}$ -open set which is not a minimal $\lambda_{\alpha c}$ -open set. Let $\{A_1, A_2, ..., A_m\}$ be the class of all minimal $\lambda_{\alpha c}$ -open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1,2,3,...,m\}$, such that $y \in \lambda_{\alpha c} Cl(A_k)$. where λ is λ -regular.

Proof. It follows from Proposition 5.2, that there exists a natural number $k \in \{1,2,3,...,m\}$ such that $A_k \subseteq B$ for any $\lambda_{\alpha c}$ -open neighborhood B of y. Therefore $\phi \neq A_k \cap A_k \subseteq A_k \cap B$ implies $y \in \lambda_{\alpha c} Cl(A_k)$. This completes the proof.

Proposition 5.4. Let $\phi \neq A$ be a finite $\lambda_{\alpha c}$ -open set in a space X and for each $k \in \{1,2,3,...,m\}$, A_k is a minimal $\lambda_{\alpha c}$ -open sets in A. If the class $\{A_1,A_2,...,A_m\}$ contains all minimal $\lambda_{\alpha c}$ -open sets in A, then for any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, where λ is semi-regular.

Proof. If A is a minimal $\lambda_{\alpha c}$ -open set, then this is the result of Theorem 3.11 (2). Otherwise, when A is not a minimal $\lambda_{\alpha c}$ -open set. If x is any element of $A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$, then by Theorem 5.3, $x \in \lambda_{\alpha c} Cl(A_1) \cup \lambda_{\alpha c} Cl(A_2) \cup \cup \lambda_{\alpha c} Cl(A_m)$. Therefore, by Theorem 3.11 (3), we obtain that $A \subseteq \lambda_{\alpha c} Cl(A_1) \cup \lambda_{\alpha c} Cl(A_n)$

 $\lambda_{\alpha c}Cl(A_2) \cup \cup \lambda_{\alpha c}Cl(A_m) = \lambda_{\alpha c}Cl(B_1) \cup \lambda_{\alpha c}Cl(B_2) \cup \cup \lambda_{\alpha c}Cl(B_m) = \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m).$

Proposition 5.5. Let $\phi \neq A$ be a finite $\lambda_{\alpha c}$ -open set and A_k is a minimal $\lambda_{\alpha c}$ -open set in A, for each $k \in \{1,2,3,...,m\}$. If for any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$ then $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$.

Proof. For any $\phi \neq B_k \subseteq A_k$ with $k \in \{1,2,3,...,m\}$, we have $\lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \subseteq \lambda_{\alpha c}Cl(A)$. Also, we have $\lambda_{\alpha c}Cl(A) \subseteq \lambda_{\alpha c}Cl(B_1) \cup \lambda_{\alpha c}Cl(B_2) \cup ... \cup \lambda_{\alpha c}Cl(B_m) = \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. Therefore, $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$ for any nonempty subset B_k of A_k with $k \in \{1,2,3,...,m\}$.

Proposition 5.6. Let $\phi \neq A$ be a finite $\lambda_{\alpha c}$ -open set and for each $k \in \{1,2,3,...,m\}$, A_k is a minimal $\lambda_{\alpha c}$ -open set in A. If for any $\phi \neq B_k \subseteq A_k$, $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, then the class $\{A_1,A_2,...,A_m\}$ contains all minimal $\lambda_{\alpha c}$ -open sets in A.

Proof. Suppose that C is a minimal $\lambda_{\alpha c}$ -open set in A and $C \neq A_k$ for $k \in \{1,2,3,...,m\}$. Then we have $C \cap \lambda_{\alpha c}Cl(A_k) = \phi$ for each $k \in \{1,2,3,...,m\}$. It follows that any element of C is not contained in $\lambda_{\alpha c}Cl(A_1 \cup A_2 \cup ... \cup A_m)$. This is a contradiction to the fact that $C \subseteq A \subseteq \lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$. This completes the proof.

Combining Propositions 5.4, 5.5 and 5.6, we have the following theorem:

Theorem 5.7.Let *A* be a nonempty finite $\lambda_{\alpha c}$ -open set and A_k a minimal $\lambda_{\alpha c}$ -open set in *A* for each $k \in \{1,2,3,...,m\}$. Then the following three conditions are equivalent:

- (1) The class $\{A_1, A_2, ..., A_m\}$ contains all minimal $\lambda_{\alpha c}$ -open sets in A.
- (2) For any $\phi \neq B_k \subseteq A_k$, $A \subseteq \lambda_{\alpha c} Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$.
- (3) For any $\phi \neq B_k \subseteq A_k$, $\lambda_{\alpha c}Cl(A) = \lambda_{\alpha c}Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, where λ is semi-regular.

References

- 1. Levine, N., Semi-open sets and semi-continuity in topological spaces. Amer. Math.Monthly, 1963. **70**(1): p. 36-41.
- 2. Njastad, O., *On some classes of nearly open sets*. Pacific J.Math, 1965. **15** p. 961-970.
- 3. Kasahara, S., Operation-Compact Spaces. Math. Japon, 1979(24): p. 97-105.
- 4. Ogata, H., *Operations on Topological Spaces and Associated Topology*. Math. Japon, 1991. **36**(1): p. 175-184.

- 5. Ahmad, B. and S. Hussain, *Properties of \gamma-Operations on Topological Spaces*. Aligarh Bull.Math, 2003. **1**(22): p. 45-51.
- 6. Hussain, S. and B. Ahmad, *On Minimal* γ *-Open Sets*. Eur. J. Pure Appl. Maths, 2009. **3**(2): p. 338-351.
- 7. Khalaf, A.B. and S.F. Namiq, *New types of continuity and separation axiom based operation in topological spaces*. M. Sc. Thesis, University of Sulaimani, 2011.
- 8. Khalaf, A.B. and S.F. Namiq, *Lammda sub c-Open Sets and Lammda sub c-Separation Axioms in Topological Spaces*. Journal of Advanced Studies in Topology, 2013. **4**(1): p. 150-158.
- 9. Namiq, S.F., *Lammda-R0* and *Lammda-R1* Spaces. Journal of Garmyan University, 2014. **4**(3).
- 10. F.Namiq, S., *Contra* $[(\lambda, \gamma)]$ ^*-*Continuous Functions*. Journal of Garmyan University, 2017.
- 11. B.Khalaf, A. and S.F. Namiq, *Generalized Lammda-Closed Sets and (Lammda, Gamma)*^*-Continuous Journal of Garmyan University, 2017: p. 2310-0087.
- 12. Namiq, S.F., *Generalized* λ _*c-Open Set.* International Journal of Scientific & Engineering Research, June-2017. **8**(6).
- 13. B.Khalaf, A. and S.F. Namiq, $\lambda \beta c$ -Connected Spaces and $\lambda \beta c$ -Components. Journal of Garmyan University, 2017.
- 14. Khalaf, A.B., H.M. Darwesh, and S.F. Namiq, λ_c -Connected Space Via λ_c -Open Sets. Journal of Garmyan University, 2017.
- 15. Namiq, S.F., λ _sc-open sets and topological properties. Journal of Garmyan University, 2014.
- 16. B.Khalaf, A. and S.F. Namiq, *ON Minimal* λ^* -*Open Sets*, . International Journal of Scientific & Engineering Research, October-2014. **5**(10).
- 17. Namiq, S.F., λ_*c-Separation Axioms Via* λ_*c-open sets*. International Journal of Scientific & Engineering Research May-2017. **8**.
- 18. Namiq, S.F., λ _sc-Connected Spaces Via λ _sc-Open Sets. Journal of Garmyan University, 2017.
- 19. Darwesh, H.M., S.F. Namiq, and W.K. Kadir, *Maximal λc-Open Sets*. ICNS-2016, 2017.
- 20. Namiq, S.F., λ -Connected Spaces Via λ -Open Sets. Journal of Garmyan University, 2015.

- 21. Darwesh, H.M. and S.F. Namiq, *On Minimal* λ _ βc -*Open Sets* Journal of Garmyan University, 2017.
- 22. Namiq, S.F., Lammda sub alpha c-Open Sets and Topological Properties. preprint
- 23. F.Namiq, S., *Lammda sub beta c-Open Sets and Topological Properties*. Journal of Garmyan University, 2017(2310-0087).
- 24. B.Khalaf, A. and S.F. Namiq, *Generalized lammda-Closed Sets and (Lammda, Gamma)*^*-Continuous Functions International Journal of Scientific & Engineering Research, 2012. **3**(12).