On Minimal λ_{ac}-Open Sets

Sarhad F. Namiq
Mathematics Department, College of Education, University of Garmian, Kurdistan Region, Iraq
Email: sarhad.faiq@garmian.edu.krd

Abstract

In this paper, we introduce and discuss minimal λ_{ac}-open sets in topological spaces. We establish some basic properties of minimal λ_{ac}-open. We obtain an application of a theory of minimal λ_{ac}-open sets and we defined a λ_{ac}-locally finite space.

1. Introduction

The study of semi open sets in topological spaces was initiated by Levine[1]. The complement of A is denoted by $X \setminus A$. In the space (X, τ), a subset A is said to be α-open [2] if $A \subseteq Int(Cl(Int(A)))$. The family of all b-open sets of (X, τ) is denoted by $BO(X)$. The complement of α-open is called α-closed. The concept of operation γ was initiated by Kasahara [3]. He also introduced γ-closed graph of a function. Using this operation, Ogata[4] introduced the concept of γ-open sets and investigated the related topological properties of the associated topology τ_{γ} and τ. He further investigated general operator approaches of closed graph of mappings. Further Ahmad and Hussain[5] continued studying the properties of γ-open(γ-closed) sets. In 2009, Hussain and Ahmad [6], introduced the concept of minimal γ-open sets. In 2011[7] (resp., in 2013[8]) Khalaf and Namiq defined an operation λ called s-operation. They defined λ^*-open sets [9] which is equivalent to λ-open set[7] and λ_s-open set[8] by using s-operation. They work in operation in topology in [10-22]. They defined $\lambda_{\beta c}$-open set by using s-operation and β-closed set and also investigated several properties of $\lambda_{\beta c}$-derived, $\lambda_{\beta c}$-interior and $\lambda_{\beta c}$-closure points in topological spaces.

In this paper, we introduce and discuss minimal λ_{ac}-open sets in topological spaces. We establish some basic properties of minimal λ_{ac}-open sets and provide an example to illustrate that minimal λ_{ac}-open sets are independent of minimal open sets.

First, we recall some definitions and results used in this paper.

2. Preliminaries

Throughout, X denotes a topological space. Let A be a subset of X, then the closure and the interior of A are denoted by $Cl(A)$ and $Int(A)$ respectively. A subset A of a topological space (X, τ) is said to be semi open [1] if $A \subseteq Cl(Int(A))$. The complement
of a semi open set is said to be semi closed [1]. The family of all semi open (resp. semi closed) sets in a topological space \((X,\tau)\) is denoted by \(SO(X,\tau)\) or \(SO(X)\) (resp. \(SC(X,\tau)\) or \(SC(X)\)). We consider \(\lambda\) as a function defined on \(SO(X)\) into \(P(X)\) and \(\lambda: SO(X) \rightarrow P(X)\) is called an \(s\)-operation if \(V \subseteq \lambda(V)\) for each non-empty semi open set \(V\). It is assumed that \(\lambda(\phi) = \phi\) and \(\lambda(X) = X\) for any \(s\)-operation \(\lambda\). Let \(X\) be a topological space and \(\lambda: SO(X) \rightarrow P(X)\) be an \(s\)-operation, then a subset \(A\) of \(X\) is called a \(\lambda^*\)-open set [9]which is equivalent to \(\lambda\) –open set[7] and \(\lambda_s\)-open set [8] if for each \(x \in A\) there exists a semi open set \(U\) such that \(x \in U\) and \(\lambda(U) \subseteq A\).

The complement of a \(\lambda^*\)-open set is said to be \(\lambda^*\)-closed. The family of all \(\lambda^*\)-open (resp., \(\lambda^*\)-closed) subsets of a topological space \((X,\tau)\) is denoted by \(SO_{\lambda}(X,\tau)\) or \(SO_{\lambda}(X)\) (resp., \(SC_{\lambda}(X,\tau)\) or \(SC_{\lambda}(X)\)).

Definition 2.1. A \(\lambda^*\)-open[9](\(\lambda\) -open[7], \(\lambda_s\)-open[8]) subset \(A\) of a topological space \(X\) is called \(\lambda_{\beta c}\)-open [23] if for each \(x \in A\) there exists a \(\beta\)-closed set \(F\) such that \(x \in F \subseteq A\). The complement of a \(\lambda_{\beta c}\)-open set is called \(\lambda_{\beta c}\)-closed[23]. The family of all \(\lambda_{\beta c}\)-open (resp., \(\lambda_{\beta c}\)-closed) subsets of a topological space \((X,\tau)\) is denoted by \(SO_{\lambda_{\beta c}}(X,\tau)\) or \(SO_{\lambda_{\beta c}}(X)\)(resp. \(SC_{\lambda_{\beta c}}(X,\tau)\) or \(SC_{\lambda_{\beta c}}(X)\)) [23].

We get the following results in [23]

Proposition 2.2. For a topological space \(X\), \(SO_{\lambda_{\beta c}}(X) \subseteq SO_{\lambda}(X) \subseteq SO(X)\).

The following example shows that the converse of the above proposition may not be true in general.

Example 2.3. Let \(X = \{a,b,c\}\), and \(\tau = \{\phi,\{a\},X\}\). We define an \(s\)-operation \(\lambda: SO(X) \rightarrow P(X)\) as \(\lambda(A) = A\) if \(b \in A\) and \(\lambda(A) = X\) otherwise. Here, we have \(\{a,c\}\) is semi open but it is not \(\lambda^*\)-open. And also \(\{a,b\}\) is \(\lambda^*\)-open set but it is not \(\lambda_{ac}\)-open.

Definition 2.4. An \(s\)-operation \(\lambda\) on \(X\) is said to be \(s\)-regular which is equivalent to \(\lambda\) -regular [8]if for every semi open sets \(U\) and \(V\) of \(x \in X\), there exists a semi open set \(W\) containing \(x\) such that \(\lambda(W) \subseteq \lambda(U) \cap \lambda(V)\).

Definition 2.5. Let \(A\) be a subset of \(X\). Then:

1. The \(\lambda_{\beta c}\)-closure of \(A\) \((\lambda_{\beta c} Cl(A))\) is the intersection of all \(\lambda_{\beta c}\)-closed sets containing \(A\).
2. The \(\lambda_{\beta c}\)-interior of \(A\) \((\lambda_{\beta c} Int(A))\) is the union of all \(\lambda_{\beta c}\)-open sets of \(X\) contained in \(A\).

Proposition 2.6. For each point \(x \in X\), \(x \in \lambda_{\beta c} Cl(A)\) if and only if \(V \cap A \neq \phi\) for every \(V \in SO_{\lambda_{\beta c}}(X)\) such that \(x \in V\).
Proposition 2.7. Let \(\{A_\alpha\}_{\alpha \in I} \) be any collection of \(\lambda_{\beta c} \)-open sets in a topological space \((X, \tau)\), then \(\bigcup_{\alpha \in I} A_\alpha \) is a \(\lambda_{\beta c} \)-open set.

Proposition 2.8. Let \(\lambda \) bean \(s \)-regular \(s \)-operation. If \(A \) and \(B \) are \(\lambda_{\beta c} \)-open sets in \(X \), then \(A \cap B \) is also a \(\lambda_{\beta c} \)-open set.

The proof of the following two propositions are in [24].

Proposition 2.9. Let \(\{A_\alpha\}_{\alpha \in I} \) be any collection of \(\lambda^* \)-open sets in a topological space \((X, \tau)\), then \(\bigcup_{\alpha \in I} A_\alpha \) is a \(\lambda^* \)-open set.

Proposition 2.10. Let \(\lambda \) be semi-regular operation. If \(A \) and \(B \) are \(\lambda^* \)-open sets in \(X \), then \(A \cap B \) is also a \(\lambda^* \)-open set.

Definition 2.11. A \(\lambda^* \)-open[9] (\(\lambda \)-open[7], \(\lambda_s \)-open[8]) subset \(A \) of a topological space \(X \) is called \(\lambda_{ac} \)-open if for each \(x \in A \) there exists a \(b \)-closed set \(F \) such that \(x \in F \subseteq A \).

The complement of a \(\lambda_{ac} \)-open set is called \(\lambda_{ac} \)-closed. The family of all \(\lambda_{ac} \)-open (resp., \(\lambda_{ac} \)-closed) subsets of a topological space \((X, \tau)\) is denoted by \(SO_{\lambda_{ac}}(X, \tau) \) or \(SO_{\lambda_{ac}}(X) \) (resp. \(SC_{\lambda_{ac}}(X, \tau) \) or \(SC_{\lambda_{ac}}(X) \)).

Proposition 2.12. For a topological space \(X \), \(SO_{\lambda_{ac}}(X) \subseteq SO_{\lambda}(X) \subseteq SO(X) \).

Proof. Obvious.

The following example shows that the converse of the above proposition may not be true in general.

Example 2.13. In Example 2.3, we have \(\{a, c\} \) is semi open but it is not \(\lambda^* \)-open. And also \(\{a, b\} \) is \(\lambda^* \)-open set but it is not \(\lambda_{ac} \)-open.

Definition 2.14. An \(s \)-operation \(\lambda \) on \(X \) is said to be \(s \)-regular which is equivalent to \(\lambda \)-regular [8] if for every semi open sets \(U \) and \(V \) of \(x \in X \), there exists a semi open set \(W \) containing \(x \) such that \(\lambda(W) \subseteq \lambda(U) \cap \lambda(V) \).

Definition 2.15. Let \(A \) be a subset of \(X \). Then:

(3) The \(\lambda_{ac} \)-closure of \(A \) (\(\lambda_{ac} Cl(A) \)) is the intersection of all \(\lambda_{ac} \)-closed sets containing \(A \).

(4) The \(\lambda_{ac} \)-interior of \(A \) (\(\lambda_{ac} Int(A) \)) is the union of all \(\lambda_{ac} \)-open sets of \(X \) contained in \(A \).

Proposition 2.16. For each point \(x \in X \), \(x \in \lambda_{ac} Cl(A) \) if and only if \(V \cap A \neq \phi \) for every \(V \in SO_{\lambda_{ac}}(X) \) such that \(x \in V \).

Proof. Obvious

Proposition 2.17. Let \(\{A_\alpha\}_{\alpha \in I} \) be any collection of \(\lambda_{ac} \)-open sets in a topological space \((X, \tau)\), then \(\bigcup_{\alpha \in I} A_\alpha \) is a \(\lambda_{ac} \)-open set.
Proof. Obvious

Proposition 2.18. Let λ bean s-regular s-operation. If A and B are λ_{ac}-open sets in X, then $A \cap B$ is also a λ_{ac}-open set.

Proof. Obvious

3. Minimal λ_{ac}-Open Sets

Definition 3.1. Let X be a space and $A \subseteq X$ be a λ_{ac}-open set. Then A is called a minimal λ_{ac}-open set if ϕ and A are the only λ_{ac}-open subsets of A.

Example 3.2. Let $X = \{a, b, c\}$, and $\tau = P(X)$. We define an s-operation $\lambda: SO(X) \rightarrow P(X)$ as $\lambda(A) = A$ if $A = \{a, c\}$ and $\lambda(A) = X$ otherwise. The λ_{ac}-open sets are $\phi, \{a, c\}$ and X. We have $\{a, c\}$ is minimal λ_{ac}-open set.

Proposition 3.3. Let A be a nonempty λ_{ac}-open subset of a space X. If $A \subseteq \lambda_{ac} Cl(C)$, then $\lambda_{ac} Cl(A) = \lambda_{ac} Cl(C)$, for any nonempty subset C of A.

Proof. For any nonempty subset C of A, we have $\lambda_{ac} Cl(C) \subseteq \lambda_{ac} Cl(A)$. On the other hand, by supposition we see $\lambda_{ac} Cl(A) = \lambda_{ac} Cl(\lambda_{ac} Cl(C)) = \lambda_{ac} Cl(C)$ implies $\lambda_{ac} Cl(A) \subseteq \lambda_{ac} Cl(C)$. Therefore we have $\lambda_{ac} Cl(A) = \lambda_{ac} Cl(C)$ for any nonempty subset C of A.

Proposition 3.4. Let A be a nonempty λ_{ac}-open subset of a space X. If $\lambda_{ac} Cl(A) = \lambda_{ac} Cl(C)$, for any nonempty subset C of A, then A is a minimal λ_{ac}-open set.

Proof. Suppose that A is not a minimal λ_{ac}-open set. Then there exists a nonempty λ_{ac}-open set B such that $B \subseteq A$ and hence there exists an element $x \in A$ such that $x \notin B$. Then we have $\lambda_{ac} Cl(\{x\}) \subseteq X \setminus B$ implies that $\lambda_{ac} Cl(\{x\}) = \lambda_{ac} Cl(A)$. This contradiction proves the proposition.

Remark 3.5. In the remainder of this section we suppose that λ is an s–regular operation defined on a topological space X.

Proposition 3.6. The following statements are true:

1. If A is a minimal λ_{ac}-open set and B a λ_{ac}-open set. Then $A \cap B = \phi$ or $A \subseteq B$.
2. If B and C are minimal λ_{ac}-open sets. Then $B \cap C = \phi$ or $B = C$.

Proof. (1) Let B be a λ_{ac}-open set such that $A \cap B \neq \phi$. Since A is a minimal λ_{ac}-open set and $A \cap B \subseteq A$, we have $A \cap B = A$. Therefore $A \subseteq B$.

2. If $A \cap B \neq \phi$, then by (1), we have $B \subseteq C$ and $C \subseteq B$. Therefore, $B = C$.

Proposition 3.7. Let A be a minimal λ_{ac}-open set. If x is an element of A, then $A \subseteq B$ for any λ_{ac}-open neighborhood B of x.

Proof. Let B be a λ_{ac}-open neighborhood of x such that $A \notin B$. Since where λ is λ–regular operation, then $A \cap B$ is λ_{ac}-open set such that $A \cap B \subseteq A$ and $A \cap B \neq \phi$. This contradicts our assumption that A is a minimal λ_{ac}-open set.
Proposition 3.8. Let A be a minimal λ_{ac}-open set. Then for any element x of A, $A = \cap\{B:B$ is λ_{ac}-open neighborhood of $x\}$.

Proof. By Proposition 3.4, and the fact that A is λ_{ac}-open neighborhood of x, we have $A \subseteq \cap\{B:B$ is λ_{ac}-open neighborhood of $x\} \subseteq A$. Therefore, the result follows.

Proposition 3.9. If A is a minimal λ_{ac}-open set in X not containing $x \in X$. Then for any λ_{ac}-open neighborhood C of x, either $C \cap A = \phi$ or $A \subseteq C$.

Proof. Since C is a λ_{ac}-open set, we have the result by Proposition 3.3.

Corollary 3.10. If A is a minimal λ_{ac}-open set in X not containing $x \in X$ such that $x \notin A$. If $\Lambda_x = \cap\{B:B$ is λ_{ac}-open neighborhood of $x\}$. Then either $\Lambda_x \cap A = \phi$ or $A \subseteq \Lambda_x$.

Proof. If $A \subseteq B$ for any λ_{ac}-open neighborhood B of x, then $A \subseteq \cap\{B:B$ is λ_{ac}-open neighborhood of $x\}$. Therefore $A \subseteq \Lambda_x$. Otherwise there exists a λ_{ac}-open neighborhood B of x such that $B \cap A = \phi$. Then we have $\Lambda_x \cap A = \phi$.

Corollary 3.11. If A is a nonempty minimal λ_{ac}-open set of X, then for a nonempty subset C of A, $A \subseteq \lambda_{ac}Cl(C)$.

Proof. Let C be any nonempty subset of A. Let $y \in A$ and B be any λ_{ac}-open neighborhood of y. By Proposition 3.4, we have $A \subseteq B$ and $C = A \cap C \subseteq B \cap C$. Thus we have $B \cap C \neq \phi$ and hence $y \in \lambda_{ac}Cl(C)$. This implies that $A \cap \lambda_{ac}Cl(C)$. This completes the proof.

Combining Corollary 3.11 and Propositions 3.3 and 3.4, we have:

Theorem 3.11. Let A be a nonempty λ_{ac}-open subset of space X. Then the following are equivalent:

1. A is minimal λ_{ac}-open set, where λ is s-regular.
2. For any nonempty subset C of A, $A \subseteq \lambda_{ac}Cl(C)$.
3. For any nonempty subset C of A, $\lambda_{ac}Cl(A) = \lambda_{ac}Cl(C)$.

4. Finite λ_{ac}-Open Sets

In this section, we study some properties of minimal λ_{ac}-open sets in finite λ_{ac}-open sets and λ_{ac}-locally finite spaces.

Proposition 4.1. Let (X, τ) be a topological space and $\phi \neq B$ a finite λ_{ac}-open set in X. Then there exists at least one (finite) minimal λ_{ac}-open set A such that $A \subseteq B$.

Proof. Suppose that B is a finite λ_{ac}-open set in X. Then we have the following two possibilities:

1. B is a minimal λ_{ac}-open set.
2. B is not a minimal b-open set.
In case (1), if we choose \(B = A \), then the proposition is proved. If the case (2) is true, then there exists a nonempty (finite) \(\lambda_{ac} \)-open set \(B_1 \) which is properly contained in \(B \). If \(B_1 \) is minimal \(\lambda_{ac} \)-open, we take \(A = B_1 \). If \(B_1 \) is not a minimal \(\lambda_{ac} \)-open set, then there exists a nonempty (finite) \(\lambda_{ac} \)-open set \(B_2 \) such that \(B_2 \subseteq B_1 \subseteq B \). We continue this process and have a sequence of \(\lambda_{ac} \)-open sets... \(\subseteq B_m \subseteq \cdots \subseteq B_2 \subseteq B_1 \subseteq B \). Since \(B \) is a finite, this process will end in a finite number of steps. That is, for some natural number \(k \), we have a minimal \(\lambda_{ac} \)-open set \(B_k \) such that \(B_k = A \). This completes the proof.

Definition 4.2. A space \(X \) is said to be a \(\lambda_{ac} \)-locally finite space, if for each \(x \in X \) there exists a finite \(\lambda_{ac} \)-open set \(A \) in \(X \) such that \(x \in A \).

Corollary 4.3. Let \(X \) be a \(\lambda_{ac} \)-locally finite space and \(B \) a nonempty \(\lambda_{ac} \)-open set. Then there exists at least one (finite) minimal \(\lambda_{ac} \)-open set \(A \) such that \(A \subseteq B \), where \(\lambda \) is semi-regular.

Proof. Since \(B \) is a nonempty set, there exists an element \(x \) of \(B \). Since \(X \) is a \(\lambda_{ac} \)-locally finite space, we have a finite \(\lambda_{ac} \)-open set \(B_x \) such that \(x \in B_x \). Since \(B \cap B_x \) is a finite \(\lambda_{ac} \)-open set, we get a minimal \(\lambda_{ac} \)-open set \(A \) such that \(A \subseteq B \cap B_x \subseteq B \) by Proposition 4.1.

Proposition 4.4. Let \(X \) be a space and for any \(\alpha \in I, B_\alpha \) a \(\lambda_{ac} \)-open set and \(\phi \neq A \) a finite \(\lambda_{ac} \)-open set. Then \(A \cap (\bigcap_{\alpha \in I} B_\alpha) \) is a finite \(\lambda_{ac} \)-open set, where \(\lambda \) is semi-regular.

Proof. We see that there exists an integer \(n \) such that \(A \cap (\bigcap_{\alpha \in I} B_\alpha) = A \cap (\bigcap_{i=1}^{n} B_{\alpha_i}) \) and hence we have the result.

Using Proposition 4.4, we can prove the following:

Theorem 4.5. Let \(X \) be a space and for any \(\alpha \in I, B_\alpha \) a \(\lambda_{ac} \)-open set and for any \(\beta \in J, B_\beta \) a nonempty finite \(\lambda_{ac} \)-open set. Then \((\bigcup_{\beta \in J} B_\beta) \cap (\bigcap_{\alpha \in I} B_\alpha) \) is a \(\lambda_{ac} \)-open set, where \(\lambda \) is semi-regular.

5. More Properties

Let \(A \) be a nonempty finite \(\lambda_{ac} \)-open set. It is clear, by Proposition 3.3 and Proposition 4.1, that if \(\lambda \) is semi-regular, then there exists a natural number \(m \) such that \(\{A_1, A_2, \ldots, A_m\} \) is the class of all minimal \(\lambda_{ac} \)-open sets in \(A \) satisfying the following two conditions:

1. For any \(i, n \) with \(1 \leq i \), \(n \leq m \) and \(i \neq n, A_i \cap A_n = \phi \).
2. If \(C \) is a minimal \(\lambda_{ac} \)-open set in \(A \), then there exists \(i \) with \(1 \leq i \leq m \) such that \(C = A_i \).
Theorem 5.1. Let X be a space and $\phi \neq A$ a finite λ_{ac}-open set such that A is not a minimal λ_{ac}-open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal λ_{ac}-open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Define $A_y = \bigcap \{B: B$ is λ_{ac}-open neighborhood of $x \}$. Then there exists a natural number $k \in \{1, 2, 3, ..., m\}$ such that A_k is contained in A_y, where λ is semi-regular.

Proof. Suppose on the contrary that for any natural number $k \in \{1, 2, 3, ..., m\}$, A_k is not contained in A_y. By Corollary 3.7, for any minimal λ_{ac}-open set A_k in A, $A_k \cap A_y = \phi$. By Proposition 4.4, $\phi \neq A_y$ is a finite λ_{ac}-open set. Therefore by Proposition 4.1, there exists a minimal λ_{ac}-open set C such that $C \subseteq A_y$. Since $C \subseteq A_y \subseteq A$, we have C is a minimal λ_{ac}-open set in A. By supposition, for any minimal λ_{ac}-open set A_k, we have $A_k \cap C \subseteq A_k \cap A_y = \phi$. Therefore, for any natural number $k \in \{1, 2, 3, ..., m\}, C \neq A_k$. This contradicts our assumption. Hence the proof.

Proposition 5.2. Let X be a space and $\phi \neq A$ be a finite λ_{ac}-open set which is not a minimal λ_{ac}-open set. Let $\{A_1, A_2, ..., A_m\}$ be a class of all minimal λ_{ac}-open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, 3, ..., m\}$, such that for any λ_{ac}-open neighborhood B_y of y, A_k is contained in B_y, where λ is λ-regular.

Proof. This follows from Theorem 5.1, as $\bigcap \{B: B$ is λ_{ac}-open of $y \} \subseteq B_y$. Hence the proof.

Theorem 5.3. Let X be a space and $\phi \neq A$ be a finite λ_{ac}-open set which is not a minimal λ_{ac}-open set. Let $\{A_1, A_2, ..., A_m\}$ be the class of all minimal λ_{ac}-open sets in A and $y \in A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$. Then there exists a natural number $k \in \{1, 2, 3, ..., m\}$, such that $y \in \lambda_{ac} Cl(A_k)$. where λ is λ-regular.

Proof. It follows from Proposition 5.2, that there exists a natural number $k \in \{1, 2, 3, ..., m\}$ such that $A_k \subseteq B$ for any λ_{ac}-open neighborhood B of y. Therefore $\phi \neq A_k \cap A_k \subseteq A_k \cap B$ implies $y \in \lambda_{ac} Cl(A_k)$. This completes the proof.

Proposition 5.4. Let $\phi \neq A$ be a finite λ_{ac}-open set in a space X and for each $k \in \{1, 2, 3, ..., m\}, A_k$ is a minimal λ_{ac}-open sets in A. If the class $\{A_1, A_2, ..., A_m\}$ contains all minimal λ_{ac}-open sets in A, then for any $\phi \neq B_k \subseteq A_k, A \subseteq \lambda_{ac} Cl(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m)$, where λ is semi-regular.

Proof. If A is a minimal λ_{ac}-open set, then this is the result of Theorem 3.11 (2). Otherwise, when A is not a minimal λ_{ac}-open set. If x is any element of $A \setminus (A_1 \cup A_2 \cup ... \cup A_m)$, then by Theorem 5.3, $x \in \lambda_{ac} Cl(A_1) \cup \lambda_{ac} Cl(A_2) \cup ... \cup \lambda_{ac} Cl(A_m)$. Therefore, by Theorem 3.11 (3), we obtain that $A \subseteq \lambda_{ac} Cl(A_1) \cup$
\[\lambda_{ac} \text{Cl}(A_2) \cup ... \cup \lambda_{ac} \text{Cl}(A_m) = \lambda_{ac} \text{Cl}(B_1) \cup \lambda_{ac} \text{Cl}(B_2) \cup ... \cup \lambda_{ac} \text{Cl}(B_m) = \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m). \]

Proposition 5.5. Let \(\phi \neq A \) be a finite \(\lambda_{ac} \)-open set and \(A_k \) is a minimal \(\lambda_{ac} \)-open set in \(A \), for each \(k \in \{1,2,3,...,m\} \). If for any \(\phi \neq B_k \subseteq A_k, A \subseteq \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \) then \(\lambda_{ac} \text{Cl}(A) = \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m). \)

Proof. For any \(\phi \neq B_k \subseteq A_k \) with \(k \in \{1,2,3,...,m\} \), we have \(\lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \subseteq \lambda_{ac} \text{Cl}(A) \). Also, we have \(\lambda_{ac} \text{Cl}(A) \subseteq \lambda_{ac} \text{Cl}(B_1) \cup \lambda_{ac} \text{Cl}(B_2) \cup ... \cup \lambda_{ac} \text{Cl}(B_m) = \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \). Therefore, \(\lambda_{ac} \text{Cl}(A) = \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \) for any nonempty subset \(B_k \) of \(A_k \) with \(k \in \{1,2,3,...,m\} \).

Proposition 5.6. Let \(\phi \neq A \) be a finite \(\lambda_{ac} \)-open set and for each \(k \in \{1,2,3,...,m\} \), \(A_k \) is a minimal \(\lambda_{ac} \)-open set in \(A \). If for any \(\phi \neq B_k \subseteq A_k, \lambda_{ac} \text{Cl}(A) = \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \), then the class \(\{A_1, A_2,...,A_m\} \) contains all minimal \(\lambda_{ac} \)-open sets in \(A \).

Proof. Suppose that \(C \) is a minimal \(\lambda_{ac} \)-open set in \(A \) and \(C \neq A_k \) for \(k \in \{1,2,3,...,m\} \). Then we have \(C \cap \lambda_{ac} \text{Cl}(A_k) = \phi \) for each \(k \in \{1,2,3,...,m\} \). It follows that any element of \(C \) is not contained in \(\lambda_{ac} \text{Cl}(A_1 \cup A_2 \cup ... \cup A_m) \). This is a contradiction to the fact that \(C \subseteq A \subseteq \lambda_{ac} \text{Cl}(A) = \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \). This completes the proof.

Combining Propositions 5.4, 5.5 and 5.6, we have the following theorem:

Theorem 5.7. Let \(A \) be a nonempty finite \(\lambda_{ac} \)-open set and \(A_k \) a minimal \(\lambda_{ac} \)-open set in \(A \) for each \(k \in \{1,2,3,...,m\} \). Then the following three conditions are equivalent:

1. The class \(\{A_1, A_2,...,A_m\} \) contains all minimal \(\lambda_{ac} \)-open sets in \(A \).
2. For any \(\phi \neq B_k \subseteq A_k, A \subseteq \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \).
3. For any \(\phi \neq B_k \subseteq A_k, \lambda_{ac} \text{Cl}(A) = \lambda_{ac} \text{Cl}(B_1 \cup B_2 \cup B_3 \cup ... \cup B_m) \), where \(\lambda \) is semi-regular.

References

