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Abstract. The present paper is devoted to introduce and study a new type of 

covering dimension function of topological spaces by using -open sets. For this 

dimension function, some properties, characterizations and relationships with other 

concepts are found and proved. 

 

1. Introduction and preliminaries.  

            The mathematician tried to know the dimension of spaces, before the 

definition of dimension was given; the use of dimension by mathematician was 

only vague sense, a space is n-dimensional if n is the least number of real 

parameters needed to describe its points in some unified way. In 19
th
 century, there 

were two celebrate discovering, the first one, is the Cantor's one-to-one 

correspondence between a line and plane which it was shown that the one-to-one 

correspondence mapping cannot preserve the dimension. However, the second one, 

is the Peano's continuous mapping of the unit interval onto unit square, this shows 

that the definition of dimensions via parameters is not suitable. So, the 

mathematicians hoped the dimension has a topological meaning, till it is 

topological invariant. For the first time, the covering dimension function is made 

by Cech in 1933 and it is also studied by Lebesque.   

           Throughout this work, a space will always mean a topological space, 

and  (or simply, and ) will denote spaces on which no separation 

axioms are assumed unless explicitly stated. The notations , and  denote the 

discrete and indiscrete topologies and  denotes the usual topology for the set of 

all real numbers . A point in a space is called a condensation point of 

[11, page 90], if  is an uncountable set, for each open set which 

contains .  is said to be an –closed set [2], if it contains all its condensation 

points. The complement of an –closed set is called –open, and it is well known 

that, a subset of a space is –open if and only if for each , there exists an 

open set contains  such that  is a countable set [12]. The family of all - 

open sets of a space  form a finer topology than  and it is denoted by  , For 

a space  we shall denote the space  by , and for any subset of , 

we denote by and , the closure, -closure, interior and -
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interior of in . We recall the following definition and result which are needed to 

prove our results. 

Definition 1.1. [12] A space X is said to be: 

1. Locally countable, if each point of X contained in a countable open set,  

2. Anti-locally countable, if each nonempty open subset of X is uncountable. 

Definition 1.2. [1, p. 54] Let be a space, the order of a family of the 

subsets of , not all empty, is the largest integer , for which there exists a 

subset of  with elements such that is nonempty, or if there is no 

such largest integer. A family of empty subsets has order . 

Theorem 1.3. [8, p. 24] Let be a locally-finite family of open subsets of a 

normal space and let be a family of closed sets such that for 

each . Then, there exists a family of open sets such that 

 for each , and the families  and  are 

similar. 

Theorem 1.4. [12] For any space  and any subset of , we have: 

1. . 

2. . 

Lemma 1.5. [12] For an anti-locally countable space , we have: 

1.  , for each -open subset of . 

2.  , for each -closed subset of . 

Definition 1.6. [7] A space is called an -connected space provided that is 

not the union of two nonempty disjoint -open sets. Analogously, is  -

disconnected, if it is not -connected. 

Definition 1.7. [7] A space is called an –space if  (i.e., . 

Theorem 1.8. [6] A space  is an  -normal space if for each pair of  -open sets  

and  in  such that  , there exist  -closed sets  and  which are 

contained in  and  , respectively and . 

Theorem 1.9. [6] Let be an anti-locally countable space. If  is -normal (resp., 

-regular), then it is normal (resp. regular) and -space. 

For any non-defined concepts see our references. 

2. The -Covering Dimension Function Properties and Relationships 

 

In this section, like the definition of covering dimension, we define another 

covering dimension which we call the  covering dimension, and study some of 

its properties and relationships with other concepts. 

 

Definition 2.1. The  covering dimension of a space X  is denoted by Xdim  

and it is defined as follows: 
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1dim  X if and only if X is empty. We say nX  dim , where n is a non-

negative integer, if each finite  open covering of X has an  open refinement 

of order not exceeding n . Also we say nX  dim , if it is true that nX  dim  

but not 1dim  nX . Finally, we say  Xdim  if for any integer n , there 

exists a finite  open covering X which has no  open refinement of order not 

exceeding n . 

Remark 2.2. Let Y be any subset of a space X . Then, we say ndinY   if it is 

true as a subspace. 

The following result shows that the  covering dimension is monotonic on 

 closed subspaces: 

Proposition 2.3. If F is an  closed subspace of a space X , then 

XF dimdim   . 

Proof. If  Xdim  or 1dim  X , then there is nothing to prove. So it is 

sufficient when we show that if nX  dim , then nF  dim . For this, let, 

 t

iiU
1

be a finite covering of F by  open sets of F . Then, by part (2) of 

Theorem 1.4, there exist  open sets iV in X such that FVU ii   for 

each ti ....,,2,1 . Hence,    FXV
t

ii 



1
is a finite  open covering of X . 

Since nX  dim , then there exists an  open refinement  
G of 

   FXV
t

ii 



1
of order not exceeding n . Thus,  

 FG  is an  open 

refinement of  t

iiU
1

of order not exceeding n .  This implies that nF  dim . 

It is easy to show the following relationship between  covering dimension 

and locally-countable spaces: 

Proposition 2.4. If X is any nonempty locally-countable space, then 

0dim  X . 

Proof. Obvious. 

The following example shows that the converse of Proposition 2.4 is not 

true: 

Example 2.5. Consider the subspace  IrruIrr , of the usual space  uR, , since 

 IrruIrr , is an anti-locally countable  normal space and 0dim Irr . Then by 

Theorem 1.9, we have 0dim  Irr . 

   The following proposition gives the relationship between  covering dimension 

and  normal spaces: 

Proposition 2.6. If X is any space with 0dim  X , then X is  normal. 

Proof. Let 0dim  X  and U , V be two  open sets of X such that 

XVU  . Therefore, there exists an  open refinement  
G of the cover 

 VU , of order not exceeding 0 . This means that the members of  
G are 
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pairwise disjoint. Then  





 UGGG ; and  





 VGGW ; are disjoint and 

WGX  . Therefore, by Theorem 1.8, X is an  normal space. 

The following example shows that the converse of Proposition 2.6 is not true 

in general. 

Example 2.7. Consider the closed ordinal space   ,0X that is given in [6, 

Example 3.4]. Since X is a normal  space, then X is an  normal space and 

XX dimdim  . But since   is a closed subset of X and there is no clopen 

subset which contains   . Since X is 1T space, then 0dim X , hence 

0dim  X . 

     The following proposition gives the relationship between  covering 

dimension and  disconnected spaces: 

Proposition 2.8. Let X be any space with more than one point. If 0dim  X , 

then X is  disconnected. 

Proof. Let 0dim  X , and let x and y  be two distinct points in X . Then, 

    yXxX  , is a finite  open covering of X . So by putting  xXU  and 

 yXV  in the proof of Proposition 4.1.6. Then, we obtain two disjoint 

 clopen sets UG and VW  such that XWG  . Thus G is a proper 

 clopen subset of X . Hence, the space X is  disconnected. 

The following example shows that the converse of Proposition 2.8 is not true 

in general. 

Example 2.9. Consider that the space  ,R with   R,0, . Since  0 is 

an  clopen subset of  ,R , then  ,R X is  disconnected. Also since there 

is no disjoint  open subset of  ,R , except  0 and  0R . This implies 

that  ,R is not an 2T space. Hence by [6, Corollary 4.5] and Theorem 1.9, it is 

not  normal. So by Proposition 2.6, 0dim  R  

The following examples show that the  covering dimension ( dim ) and 

covering dimension ( dim ) are distinct. They also show that ( dim ) is distinct 

from each of c- dim  (s- dim , s- cdim , p- dim and q- dim ). For these inductive 

dimensions we refer [3], [4], [5], [9] and [10]: 

Example 2.10. Let  cbaX ,, and      cabaaX ,,,,,, . Then,   XSO  

   XPOXCO  . Since the family       cabaa ,,,, is an open (semi-open, c-open, p-

open) refinement of every open, clopen, semi-open, preopen cover of X , 

then 1dim X c- Xdim s- Xdim s- Xcdim p- Xdim , but by Proposition 2.4, we 

have 0dim  X . 

Example 2.11. Consider the topological space  indTX , , where X is an uncountable 

set. So we have      
qindind TXCOTXSO  and   disTXPO  . Then  0dim X c-
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Xdim s- Xdim s- Xcdim p- Xdim q- Xdim . Since X is not  regular 

then 0dim  X  ( in fact  Xdim ). 

However, the following results exhibit a relationship between  covering 

dimension and covering dimension: 

Corollary 2.12. If a space X is locally-countable, then XX dimdim  .  

Proof. Follows from Proposition 2.4.  

Corollary 2.13. If a space X is anti-locally-countable  regular or  normal, 

then XX dimdim  . 

Proof. Follows from Theorem 1.9. 

Also, we obtain the following corollary: 

Corollary 2.14. If a space X is anti-locally-countable such that 0dim  X , 

then 0dim X . 

Proof. Follows From Corollary 2.13. 

Since if X is a countable set equipped with the discrete topology or 

indiscrete, then XX dim0dim  . However, X is not an anti-locally-countable 

space. This means that the converse of the Corollary 2.13 is not true, and in virtue 

of Example 2.11, the  regularity of X cannot be dropped in the Corollary 2.13, 

but it can be replaced by another condition for example see Corollary 2.17, below.  

We can show the following relationship between  covering dimension and 

covering dimension: 

Theorem 2.15. Let X be an anti-locally-countable normal space. Then, 

XX dimdim  . 

Proof. If either  Xdim or 1dim  X , then there is nothing to prove. 

Let n be any non-negative integer such that nX  dim , and let  t

iiG
1

be any 

finite open covering of X . Since X is normal, so, there exists an open 

covering  t

iiO
1

such that ii GClO  for each ti ,...,2,1 . Again, by normality 

of X and Theorem 1.3, there exists a family  t

iiV
1

of open subsets of X such 

that iiii GClVVClO   for each ti ,...,2,1 , and the 

families  t

iiClV
1

and  t

iiClO
1

are similar. Since nX  dim , then there is 

an  open refinement   of  t

iiV
1

of order not exceeding n . Let 

 ii VWWU  ; for each ti ,...,2,1 . Clearly  t

iiU
1

is of order not 

exceeding n .  Since X is anti-locally-countable, and for each ti ,...,2,1 , iU is 

 open in X . Then by Lemma 1.5, we have iiii GClVIntClUU  . Hence, 

 t

iiIntClU
1

is an open refinement of  t

iiG
1

of order not exceeding n . 

Therefore, XnX dimdim   . 

Finally, we have the following relationship between  covering dimension 

and covering dimension: 
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Theorem 2.16 If a space X has the property that every  open covering 

of X has a locally-finite open refinement. Then, XX dimdim  . 

Proof. Let X be a space with the given property. So, if either  Xdim  

or 1dim  X , then there is nothing to prove. Suppose that nX dim , and 

let  t

iiU
1

be any finite  open covering of X . Then by hypothesis, this  open 

covering has a locally-finite open refinement  
G . Let  






 ii UGGG ;  

for each i . Thus  t

iiG
1

is a finite open covering of X . Since nX dim , then there 

exists an open refinement  
W of  t

iiG
1

 (and hence of  t

iiU
1
) of order not 

exceeding n , therefore, XnX dimdim  . 

As an immediate consequence of Theorem 2.15 and Theorem 2.16, we have: 

Corollary 2.17. If X  an anti-locally-countable normal space with the property 

that every  open covering of X has a locally-finite open refinement, then 

XX dimdim  . 

 

3. Some Characterizations and Other Results on  Covering Dimension 

 

In this section, we give some characterizations of  covering dimension. 

Also we give some other results on  covering dimension, without proof and then 

our first characterization is the following: 

Theorem 3.1. If X is any space, then, the following statements are equivalent:  

1. nX  dim . 

2. For every finite  open covering  t

iiU
1

 of , there is an  open 

covering  t

iiV
1

of order not exceeding n such that ii UV  for each 

ti ,...,2,1 . 

3. If   2

1





n

iiU  is an  open covering of , there is an  open covering 

  2

1





n

iiV such that 





2

1

n

i

iV . 

Theorem 3.2. If X is any  normal space, then, the following statements are 

equivalent:  

1. nX  dim . 

2. For every finite  open covering  t

iiU
1

 of X there is an  open 

covering  t

iiV
1

 such that ii UClV  for each ti ,...,2,1 , and the order of 

 t

iiClV
1

  does not exceed n . 
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3. For every finite  open covering  t

iiU
1

 of X there is an  closed 

covering  t

iiF
1

of order not exceeding n such that ii UF  for each 

ti ,...,2,1 . 

4. Every finite  open covering of X has a finite  closed refinement of 

order that does not exceed n . 

5. If   2

1





n

iiU  is an  open covering of X there is an  closed covering 

  2

1





n

iiF such that 





2

1

n

i

iF . 

Theorem 3.3. If X is any  normal space, then the following statements are 

equivalent:  

1. nX  dim . 

2. For each family   1

1





n

iiF of  closed sets and each family   1

1





n

iiU  of  open 

sets of X such that ii UF  for each i , there is a family   1

1





n

iiV  of  open 

sets such that iiii UClVVF   for each i , and    





1

1

n

i

iVb . 

3. For each family  t

iiF
1

of  closed sets and each family  t

iiU
1

of  open 

sets of X such that ii UF  for each i , there exist families  t

iiV
1

and 

 t

iiW
1

of  open sets such that iiiii UWClVVF   for each i , and the 

order of   t

iii VWCl
1

 does not exceed 1n . 

4. For each family  t

iiF
1

of  closed sets and each family  t

iiU
1

of  open 

sets of X such that ii UF  for each i , there is a family  t

iiV
1

 of  open 

sets such that iiii UClVVF   for each i , and the order 

of   t

iiVb
1

 does not exceed 1n . 

Similarly, as [26, p. 118], we can extend Theorem 3.3 to countable families 

in the following result: 

Proposition 3.4. If X is any  normal space such that nX  dim , then for 

each family  
NiiF


of  closed sets and each family  

NiiU


of  open sets 

of X such that ii UF  for each i , there is a family  
NiiV


 of  open sets such 

that iii UVF  for each i I, and   the family   
NiiVb


 does not exceed 1n . 

Definition 3.5. Let A and B be any two disjoint sets in a space X . A subset L is 

called an  partition between A and B  , if there exist two disjoint  open 

sets U and W such that UA , WB  and WULX  . 

  We can prove the following useful characterization of  covering 

dimension: 

Theorem 3.6. If X is any  normal space, then the following statements are 

equivalent:  
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1. nX  dim . 

2. For each family    1

1
,





n

iii FE  of 1n pairs of disjoint  closed sets, there 

exist 1n   continuous mappings IXf i :  such that    0ii Ef and 

   1ii Ff for each i , and 












1

1

1

2

1n

i

if . 

3. For each family    1

1
,





n

iii FE  of 1n pairs of disjoint  closed sets, there 

exists a family   1

1





n

iiL of  closed sets of X  such that iL is an 

 partition between iE and iF for each i , and 
1

1






n

i

iL . 

The following result is called the sum theorem for   covering dimension: 

Theorem 3.7. Let X be a topological sum of the family of spaces  
X  . 

If nX   dim , for each  then nX  dim +1. 

The following is a useful theorem about  covering dimension: 

Theorem 3.8. If X is an  normal space with the property that for each 

 closed set F  and each  open set U such that UF  , there exists an 

 open set V  in X  such that UVF   and   nVb   dim . Then 

1dim  nX . 
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