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Abstract. The present paper is devoted to introduce and study a new type of 

covering dimension function of topological spaces by using -open sets. For this 

dimension function, some properties, characterizations and relationships with other 

concepts are found and proved. 

 

1. Introduction and preliminaries.  

            The mathematician tried to know the dimension of spaces, before the 

definition of dimension was given; the use of dimension by mathematician was 

only vague sense, a space is n-dimensional if n is the least number of real 

parameters needed to describe its points in some unified way. In 19
th
 century, there 

were two celebrate discovering, the first one, is the Cantor's one-to-one 

correspondence between a line and plane which it was shown that the one-to-one 

correspondence mapping cannot preserve the dimension. However, the second one, 

is the Peano's continuous mapping of the unit interval onto unit square, this shows 

that the definition of dimensions via parameters is not suitable. So, the 

mathematicians hoped the dimension has a topological meaning, till it is 

topological invariant. For the first time, the covering dimension function is made 

by Cech in 1933 and it is also studied by Lebesque.   

           Throughout this work, a space will always mean a topological space, 

and  (or simply, and ) will denote spaces on which no separation 

axioms are assumed unless explicitly stated. The notations , and  denote the 

discrete and indiscrete topologies and  denotes the usual topology for the set of 

all real numbers . A point in a space is called a condensation point of 

[11, page 90], if  is an uncountable set, for each open set which 

contains .  is said to be an –closed set [2], if it contains all its condensation 

points. The complement of an –closed set is called –open, and it is well known 

that, a subset of a space is –open if and only if for each , there exists an 

open set contains  such that  is a countable set [12]. The family of all - 

open sets of a space  form a finer topology than  and it is denoted by  , For 

a space  we shall denote the space  by , and for any subset of , 

we denote by and , the closure, -closure, interior and -
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interior of in . We recall the following definition and result which are needed to 

prove our results. 

Definition 1.1. [12] A space X is said to be: 

1. Locally countable, if each point of X contained in a countable open set,  

2. Anti-locally countable, if each nonempty open subset of X is uncountable. 

Definition 1.2. [1, p. 54] Let be a space, the order of a family of the 

subsets of , not all empty, is the largest integer , for which there exists a 

subset of  with elements such that is nonempty, or if there is no 

such largest integer. A family of empty subsets has order . 

Theorem 1.3. [8, p. 24] Let be a locally-finite family of open subsets of a 

normal space and let be a family of closed sets such that for 

each . Then, there exists a family of open sets such that 

 for each , and the families  and  are 

similar. 

Theorem 1.4. [12] For any space  and any subset of , we have: 

1. . 

2. . 

Lemma 1.5. [12] For an anti-locally countable space , we have: 

1.  , for each -open subset of . 

2.  , for each -closed subset of . 

Definition 1.6. [7] A space is called an -connected space provided that is 

not the union of two nonempty disjoint -open sets. Analogously, is  -

disconnected, if it is not -connected. 

Definition 1.7. [7] A space is called an –space if  (i.e., . 

Theorem 1.8. [6] A space  is an  -normal space if for each pair of  -open sets  

and  in  such that  , there exist  -closed sets  and  which are 

contained in  and  , respectively and . 

Theorem 1.9. [6] Let be an anti-locally countable space. If  is -normal (resp., 

-regular), then it is normal (resp. regular) and -space. 

For any non-defined concepts see our references. 

2. The -Covering Dimension Function Properties and Relationships 

 

In this section, like the definition of covering dimension, we define another 

covering dimension which we call the  covering dimension, and study some of 

its properties and relationships with other concepts. 

 

Definition 2.1. The  covering dimension of a space X  is denoted by Xdim  

and it is defined as follows: 
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1dim  X if and only if X is empty. We say nX  dim , where n is a non-

negative integer, if each finite  open covering of X has an  open refinement 

of order not exceeding n . Also we say nX  dim , if it is true that nX  dim  

but not 1dim  nX . Finally, we say  Xdim  if for any integer n , there 

exists a finite  open covering X which has no  open refinement of order not 

exceeding n . 

Remark 2.2. Let Y be any subset of a space X . Then, we say ndinY   if it is 

true as a subspace. 

The following result shows that the  covering dimension is monotonic on 

 closed subspaces: 

Proposition 2.3. If F is an  closed subspace of a space X , then 

XF dimdim   . 

Proof. If  Xdim  or 1dim  X , then there is nothing to prove. So it is 

sufficient when we show that if nX  dim , then nF  dim . For this, let, 

 t

iiU
1

be a finite covering of F by  open sets of F . Then, by part (2) of 

Theorem 1.4, there exist  open sets iV in X such that FVU ii   for 

each ti ....,,2,1 . Hence,    FXV
t

ii 



1
is a finite  open covering of X . 

Since nX  dim , then there exists an  open refinement  
G of 

   FXV
t

ii 



1
of order not exceeding n . Thus,  

 FG  is an  open 

refinement of  t

iiU
1

of order not exceeding n .  This implies that nF  dim . 

It is easy to show the following relationship between  covering dimension 

and locally-countable spaces: 

Proposition 2.4. If X is any nonempty locally-countable space, then 

0dim  X . 

Proof. Obvious. 

The following example shows that the converse of Proposition 2.4 is not 

true: 

Example 2.5. Consider the subspace  IrruIrr , of the usual space  uR, , since 

 IrruIrr , is an anti-locally countable  normal space and 0dim Irr . Then by 

Theorem 1.9, we have 0dim  Irr . 

   The following proposition gives the relationship between  covering dimension 

and  normal spaces: 

Proposition 2.6. If X is any space with 0dim  X , then X is  normal. 

Proof. Let 0dim  X  and U , V be two  open sets of X such that 

XVU  . Therefore, there exists an  open refinement  
G of the cover 

 VU , of order not exceeding 0 . This means that the members of  
G are 
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pairwise disjoint. Then  





 UGGG ; and  





 VGGW ; are disjoint and 

WGX  . Therefore, by Theorem 1.8, X is an  normal space. 

The following example shows that the converse of Proposition 2.6 is not true 

in general. 

Example 2.7. Consider the closed ordinal space   ,0X that is given in [6, 

Example 3.4]. Since X is a normal  space, then X is an  normal space and 

XX dimdim  . But since   is a closed subset of X and there is no clopen 

subset which contains   . Since X is 1T space, then 0dim X , hence 

0dim  X . 

     The following proposition gives the relationship between  covering 

dimension and  disconnected spaces: 

Proposition 2.8. Let X be any space with more than one point. If 0dim  X , 

then X is  disconnected. 

Proof. Let 0dim  X , and let x and y  be two distinct points in X . Then, 

    yXxX  , is a finite  open covering of X . So by putting  xXU  and 

 yXV  in the proof of Proposition 4.1.6. Then, we obtain two disjoint 

 clopen sets UG and VW  such that XWG  . Thus G is a proper 

 clopen subset of X . Hence, the space X is  disconnected. 

The following example shows that the converse of Proposition 2.8 is not true 

in general. 

Example 2.9. Consider that the space  ,R with   R,0, . Since  0 is 

an  clopen subset of  ,R , then  ,R X is  disconnected. Also since there 

is no disjoint  open subset of  ,R , except  0 and  0R . This implies 

that  ,R is not an 2T space. Hence by [6, Corollary 4.5] and Theorem 1.9, it is 

not  normal. So by Proposition 2.6, 0dim  R  

The following examples show that the  covering dimension ( dim ) and 

covering dimension ( dim ) are distinct. They also show that ( dim ) is distinct 

from each of c- dim  (s- dim , s- cdim , p- dim and q- dim ). For these inductive 

dimensions we refer [3], [4], [5], [9] and [10]: 

Example 2.10. Let  cbaX ,, and      cabaaX ,,,,,, . Then,   XSO  

   XPOXCO  . Since the family       cabaa ,,,, is an open (semi-open, c-open, p-

open) refinement of every open, clopen, semi-open, preopen cover of X , 

then 1dim X c- Xdim s- Xdim s- Xcdim p- Xdim , but by Proposition 2.4, we 

have 0dim  X . 

Example 2.11. Consider the topological space  indTX , , where X is an uncountable 

set. So we have      
qindind TXCOTXSO  and   disTXPO  . Then  0dim X c-
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Xdim s- Xdim s- Xcdim p- Xdim q- Xdim . Since X is not  regular 

then 0dim  X  ( in fact  Xdim ). 

However, the following results exhibit a relationship between  covering 

dimension and covering dimension: 

Corollary 2.12. If a space X is locally-countable, then XX dimdim  .  

Proof. Follows from Proposition 2.4.  

Corollary 2.13. If a space X is anti-locally-countable  regular or  normal, 

then XX dimdim  . 

Proof. Follows from Theorem 1.9. 

Also, we obtain the following corollary: 

Corollary 2.14. If a space X is anti-locally-countable such that 0dim  X , 

then 0dim X . 

Proof. Follows From Corollary 2.13. 

Since if X is a countable set equipped with the discrete topology or 

indiscrete, then XX dim0dim  . However, X is not an anti-locally-countable 

space. This means that the converse of the Corollary 2.13 is not true, and in virtue 

of Example 2.11, the  regularity of X cannot be dropped in the Corollary 2.13, 

but it can be replaced by another condition for example see Corollary 2.17, below.  

We can show the following relationship between  covering dimension and 

covering dimension: 

Theorem 2.15. Let X be an anti-locally-countable normal space. Then, 

XX dimdim  . 

Proof. If either  Xdim or 1dim  X , then there is nothing to prove. 

Let n be any non-negative integer such that nX  dim , and let  t

iiG
1

be any 

finite open covering of X . Since X is normal, so, there exists an open 

covering  t

iiO
1

such that ii GClO  for each ti ,...,2,1 . Again, by normality 

of X and Theorem 1.3, there exists a family  t

iiV
1

of open subsets of X such 

that iiii GClVVClO   for each ti ,...,2,1 , and the 

families  t

iiClV
1

and  t

iiClO
1

are similar. Since nX  dim , then there is 

an  open refinement   of  t

iiV
1

of order not exceeding n . Let 

 ii VWWU  ; for each ti ,...,2,1 . Clearly  t

iiU
1

is of order not 

exceeding n .  Since X is anti-locally-countable, and for each ti ,...,2,1 , iU is 

 open in X . Then by Lemma 1.5, we have iiii GClVIntClUU  . Hence, 

 t

iiIntClU
1

is an open refinement of  t

iiG
1

of order not exceeding n . 

Therefore, XnX dimdim   . 

Finally, we have the following relationship between  covering dimension 

and covering dimension: 



 مجلة جامعة كرميان                  ournal of Garmian University J                             طؤظاري زانكؤي طةرميان

48 acadj@garmian.edu.krd                             Conference Paper (July, 2017) 

 

Theorem 2.16 If a space X has the property that every  open covering 

of X has a locally-finite open refinement. Then, XX dimdim  . 

Proof. Let X be a space with the given property. So, if either  Xdim  

or 1dim  X , then there is nothing to prove. Suppose that nX dim , and 

let  t

iiU
1

be any finite  open covering of X . Then by hypothesis, this  open 

covering has a locally-finite open refinement  
G . Let  






 ii UGGG ;  

for each i . Thus  t

iiG
1

is a finite open covering of X . Since nX dim , then there 

exists an open refinement  
W of  t

iiG
1

 (and hence of  t

iiU
1
) of order not 

exceeding n , therefore, XnX dimdim  . 

As an immediate consequence of Theorem 2.15 and Theorem 2.16, we have: 

Corollary 2.17. If X  an anti-locally-countable normal space with the property 

that every  open covering of X has a locally-finite open refinement, then 

XX dimdim  . 

 

3. Some Characterizations and Other Results on  Covering Dimension 

 

In this section, we give some characterizations of  covering dimension. 

Also we give some other results on  covering dimension, without proof and then 

our first characterization is the following: 

Theorem 3.1. If X is any space, then, the following statements are equivalent:  

1. nX  dim . 

2. For every finite  open covering  t

iiU
1

 of , there is an  open 

covering  t

iiV
1

of order not exceeding n such that ii UV  for each 

ti ,...,2,1 . 

3. If   2

1





n

iiU  is an  open covering of , there is an  open covering 

  2

1





n

iiV such that 





2

1

n

i

iV . 

Theorem 3.2. If X is any  normal space, then, the following statements are 

equivalent:  

1. nX  dim . 

2. For every finite  open covering  t

iiU
1

 of X there is an  open 

covering  t

iiV
1

 such that ii UClV  for each ti ,...,2,1 , and the order of 

 t

iiClV
1

  does not exceed n . 
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3. For every finite  open covering  t

iiU
1

 of X there is an  closed 

covering  t

iiF
1

of order not exceeding n such that ii UF  for each 

ti ,...,2,1 . 

4. Every finite  open covering of X has a finite  closed refinement of 

order that does not exceed n . 

5. If   2

1





n

iiU  is an  open covering of X there is an  closed covering 

  2

1





n

iiF such that 





2

1

n

i

iF . 

Theorem 3.3. If X is any  normal space, then the following statements are 

equivalent:  

1. nX  dim . 

2. For each family   1

1





n

iiF of  closed sets and each family   1

1





n

iiU  of  open 

sets of X such that ii UF  for each i , there is a family   1

1





n

iiV  of  open 

sets such that iiii UClVVF   for each i , and    





1

1

n

i

iVb . 

3. For each family  t

iiF
1

of  closed sets and each family  t

iiU
1

of  open 

sets of X such that ii UF  for each i , there exist families  t

iiV
1

and 

 t

iiW
1

of  open sets such that iiiii UWClVVF   for each i , and the 

order of   t

iii VWCl
1

 does not exceed 1n . 

4. For each family  t

iiF
1

of  closed sets and each family  t

iiU
1

of  open 

sets of X such that ii UF  for each i , there is a family  t

iiV
1

 of  open 

sets such that iiii UClVVF   for each i , and the order 

of   t

iiVb
1

 does not exceed 1n . 

Similarly, as [26, p. 118], we can extend Theorem 3.3 to countable families 

in the following result: 

Proposition 3.4. If X is any  normal space such that nX  dim , then for 

each family  
NiiF


of  closed sets and each family  

NiiU


of  open sets 

of X such that ii UF  for each i , there is a family  
NiiV


 of  open sets such 

that iii UVF  for each i I, and   the family   
NiiVb


 does not exceed 1n . 

Definition 3.5. Let A and B be any two disjoint sets in a space X . A subset L is 

called an  partition between A and B  , if there exist two disjoint  open 

sets U and W such that UA , WB  and WULX  . 

  We can prove the following useful characterization of  covering 

dimension: 

Theorem 3.6. If X is any  normal space, then the following statements are 

equivalent:  
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1. nX  dim . 

2. For each family    1

1
,





n

iii FE  of 1n pairs of disjoint  closed sets, there 

exist 1n   continuous mappings IXf i :  such that    0ii Ef and 

   1ii Ff for each i , and 












1

1

1

2

1n

i

if . 

3. For each family    1

1
,





n

iii FE  of 1n pairs of disjoint  closed sets, there 

exists a family   1

1





n

iiL of  closed sets of X  such that iL is an 

 partition between iE and iF for each i , and 
1

1






n

i

iL . 

The following result is called the sum theorem for   covering dimension: 

Theorem 3.7. Let X be a topological sum of the family of spaces  
X  . 

If nX   dim , for each  then nX  dim +1. 

The following is a useful theorem about  covering dimension: 

Theorem 3.8. If X is an  normal space with the property that for each 

 closed set F  and each  open set U such that UF  , there exists an 

 open set V  in X  such that UVF   and   nVb   dim . Then 

1dim  nX . 
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