http://garmian.edu.krd
https://doi.org/10.24271/garmian. 129

Maximal (k, n)-arc in Projective Plane PG(2, 5)

Najim Abdullah Ismaeel
University of Garmian -College of Education- Math. Department

Abstract

: In this paper we recognize maximal (k, n)-arcs in the projective plane $\mathrm{PG}(2$, $5), \mathrm{n}=2,3, \ldots, 5$, where $\mathrm{a}(\mathrm{k}, \mathrm{n})-\operatorname{arc} \mathrm{K}$ in a projective plane is a set of K points such that no $\mathrm{n}+1$ of which are collinear. A $(\mathrm{k}, \mathrm{n})-\operatorname{arc}$ is a maximal if and only if every line in the projective plane $\mathrm{PG}(2, \mathrm{P})$ is a O -secant, or n -secant, which represented as ($\mathrm{k}, 2$)-arc and ($\mathrm{k}, 6$)-arc. A (k, n)-arc is complete if it is not contained in a $(\mathrm{k}+1, \mathrm{n})-\operatorname{arc}$.

\section*{Keywords:} projective plane PG (2,5), conics of PG (2,5), maximal and complete (k, n)arcs.

1. Introduction:

Ahmad(1999) [4] studied the complete arcs in the projective plane over Galois Field GF(9), also Rashad (1999) [10] showed the complete arcs in the projective plane over Galois Field GF(q), and Massa (2004) [7] studied the constriction of (k, n)- arcs from (k, m) - arcs in the $\operatorname{PG}(2,17)$ for $2 \leq m<n$. Ban (2001) [5] studied maximal (k, n)-arcs. Finally Najim (2005) [8] studied the constriction of (k, n) - arcs from $(k, m)-\operatorname{arcs}$ in the $P G(2,13)$ for $2 \leq m<n$. This paper deals with maximal $(k, n)-$ arc in the projective plane PG $(2, n)$ which are three $(6,2)$ arcs and unique $(31,6)$-arc.

The maximal (k, n)-arcs are of two types which are $(k, 2)$ - arcs where each line contains six points and (k,6) - arc or which represented the whole plane where each line contains eight points. From the both maximal (k, n)-arcs we construct complete $(\mathrm{k}, \mathrm{n})-\operatorname{arc}, \mathrm{n}<\mathrm{k}$ prepared from the intersecting of some maximal or complete $(\mathrm{k}, \mathrm{m})-\operatorname{arc}, \quad 2 \leq \mathrm{m}<\mathrm{n}$, after eliminating some points of incomplete the new constructing arcs .

2- Basic Definition:

2.1 Definition (K, n) - Arcs [1, 2, 6, 8] :

A (k, n) - arc in the projective plane $P G(2, P)$ is a set K points such that some line meets K in n points but no line meets K in more than n points, $\mathrm{n} \geq 2$, p is prime.

2.2 Definition [4,7, 9, 10]:

A (k, n)-arc is complete if it is not contained in $(k+1, n)-\operatorname{arc}$.

2.3 Definition [3, 6, 8, 11]:

A point P which is not on $(k, n)-\operatorname{arc} K$ has index i if there are exactly $i(n-s e c a n t)$ through P , we dented the numbers of point P of index i by C_{i}

2.4 Definition [5, 6, 9, 11]:

A $(k, n)-\operatorname{arc} K$ is a maximal if and only if every line in $P G(2, p)$ is a $0-$ secant or $n-$ secant.

2.5 Definition PG(2, 5)[1, 6, 9, 11]:

A PG $(2,5)$ is the two - dimensional projective space which consists of points and lines with incidence relation between them and satisfying the following axioms:
i. Any two distinct lines are intersected in a unique point.
ii. Any two distinct points are contained in a unique line.
iii. There exist at least four points such that no three of them are collinear .

Remark (1)[4, 5, 6]:

A $(k, n)-\operatorname{arc} K$ is complete if and only if $C_{0}=0$, we mean that C_{0} is $0(n-$ secant $)$, thus K is complete if and only if every point of $\mathrm{PG}(2, \mathrm{p})$ lies on some (n -secant) of K .

3- The Projective Plane PG $(2,5)$:

The projective plane PG $(2,5)$ contains 31 points and 31 lines, every line contains 6 points and every point is on 6 lines. Any line in PG $(2,5)$ can be constructed by means of variety v . Let Pi and $\mathrm{Li}, \mathrm{i}=1,2, \ldots, 31$ be the points and lines of $\mathrm{PG}(2,5)$ respectively. Let i stands for the points Pi and the lines Li , then all the points and the lines in $\mathrm{PG}(2,5)$ are given in the table (1)

I	Pi	Li					
1	$(1,0,0)$	2	7	12	17	22	27
2	$(0,1,0)$	1	7	8	9	10	11
3	$(1,1,0)$	6	7	16	20	24	28
4	$(2,1,0)$	4	7	14	21	23	30
5	$(3,1,0)$	5	7	15	18	26	29
6	$(4,1,0)$	3	7	13	19	25	31
7	$(0,0,1)$	1	2	3	4	5	6
8	$(1,0,1)$	2	11	16	21	26	31
9	$(2,0,1)$	2	9	14	19	24	29
10	$(3,0,1)$	2	10	15	20	25	30
11	$(4,0,1)$	2	8	13	18	23	28
12	$(0,1,1)$	1	27	28	29	30	31
13	$(1,1,1)$	6	11	15	19	23	27
14	$(2,1,1)$	4	9	16	18	25	27
15	$(3,1,1)$	5	10	13	21	24	27
16	$(4,1,1)$	3	8	14	20	26	27
17	$(0,2,1)$	1	17	18	19	20	21
18	$(1,2,1)$	5	11	14	17	25	28
19	$(2,2,1)$	6	9	13	17	26	30
20	$(3,2,1)$	3	10	16	17	23	29
21	$(4,2,1)$	4	8	15	17	24	31
22	$(0,3,1)$	1	22	23	24	25	26

23	$(1,3,1)$	4	11	13	20	22	29
24	$(2,3,1)$	3	9	15	21	22	28
25	$(3,3,1)$	6	10	14	18	22	31
26	$(4,3,1)$	5	8	16	19	22	30
27	$(0,4,1)$	1	12	13	14	15	16
28	$(1,4,1)$	3	11	12	18	24	30
29	$(2,4,1)$	5	9	12	20	23	31
30	$(3,4,1)$	4	10	12	19	26	28
31	$(4,4,1)$	6	8	12	21	25	29

Table (1)
(Contains 31 points and 31 lines, every line contains 6 points and every point is on 6 lines)

4- The Construction of $(k, 2)$ - Arcs in PG (2, 5) :

Let $A=\{1,2,7,13\}$ be the set reference and unit points in the table (1) such that $1=(1,0$, $0), 2=(0,1,0), 7=(0,0,1), 13=(1,1,1) . \mathrm{A}$ is a $(4,2)-\operatorname{arc}$, since no three points of A are collinear , the points of A are the vertices of a quadrangle whose side are the lines.

$$
\begin{aligned}
& l_{1}=[1,2]=\{1,2,3,4,5,6\} \\
& \iota_{2}=[1,7]=\{1,7,8,9,10,11\} \\
& \text { cle }_{3}=[1,13]=\{1,12,13,14,15,16\} \\
& \text { l }_{4}=[2,7]=\{2,7,12,17,22,27\} \\
& \text { l }_{5}=[2,13]=\{2,8,13,18,23,28\} \\
& c_{6}=[7,13]=\{3,7,13,19,25,31\}
\end{aligned}
$$

The diagonal points of A are the points $\{3,8,12\}$ where:
$3=l_{1} \cap l_{6}$
$8=l_{2} \cap l_{5}$
 $12=\mathscr{l}_{3} \cap \mathfrak{L}_{4}$, which are the intersection points of pairs of the opposite sides. Then there are 25 points on the sides of the quadrangle, four of them are points of the arc A, and three of
them are diagonal points of A , so there are six points not on the sides of the quadrangle which are the points of index zero for A these points are: $\{20,21,24,26,29,30\}$. Hence A is incomplete (4, 2) - arc.

5- The Conics In PG $(2,5)$ Through the Reference and Unit points

The general equation of conic is

$$
\begin{equation*}
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}+a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0 \tag{1}
\end{equation*}
$$

By substituting the points of the arc - A in (1), we get
$1=(1,0,0) \rightarrow a_{1}=0$
$2=(0,1,0) \rightarrow a_{2}=0$
$7=(0,0,1) \rightarrow a_{3}=0$
$13=(1,1,1) \rightarrow a_{4}+a_{5}+a_{6}=0$
So equation (1) becomes

$$
\begin{equation*}
a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0 \tag{2}
\end{equation*}
$$

If $a_{4}=0$, then $a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0$
Hence $x_{3}\left(a_{5} x_{1}+a_{6} x_{2}\right)=0, x_{3}=0$ or $a_{5} x_{1}+a_{6} x_{2}=0$
which are a pair of lines, then the conic is degenerated, therefore $a_{4} \neq 0$
Similarly $a_{5} \neq 0$ and $a_{6} \neq 0$
Dividing equation (2) by a_{4} we get
$x_{1} x_{2}+\frac{a_{5}}{a_{4}} x_{1} x_{3}+\frac{a_{6}}{a_{4}} x_{2} x_{3}=0$
$x_{1} x_{2}+\alpha x_{1} x_{3}+\beta x_{2} x_{3}=0$
$\alpha=\frac{a_{5}}{a_{4}}, \quad \beta=\frac{a_{6}}{a_{4}}$, then
$1+\alpha+\beta=0(\bmod (5))$
$\beta=-(1+\alpha)$, then (3) can be written as:
$x_{1} x_{2}+\alpha x_{1} x_{3}-(1+\alpha) x_{2} x_{3}=0$
Where $\alpha \neq 0$ and $\alpha \neq 4$, for if $\alpha=0$ or $\alpha=4$, we get degenerated conic, i.e $\alpha=1,2,3$.

6-The Equations and the Points of the Conic of PG $(2,5)$ Through The

Reference and Unit Points:-

For any value for α there is a unique conic containing six points, four of them are the reference and unit points and they are maximal arcs since contains six points:
1- If $\alpha=1$, then the equation of the conic C_{1} is
$x_{1} x_{2}+x_{1} x_{3}+3 x_{2} x_{3}=0$, the point of C_{1} are $\{1,2,7,13,14,20\}$,
2- If $\alpha=2$, then the equation of the conic C_{2} is
$x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}=0$, the points of C_{2} are $\{1,2,7,13,21,23\}$,

3- If $\alpha=3$, then the equation of the conic C_{3} is
$x_{1} x_{2}+3 x_{1} x_{3}+x_{2} x_{3}=0$, the points of C_{3} are $\{1,2,7,13,24,30\}$.
Thus there are three maximal $(6,2)-\operatorname{arcs}$ in the PG $(2,5)$ which are
$C_{1}=\{1,2,7,13,14,20\}$
$C_{2}=\{1,2,7,13,21,23\}$
$C_{3}=\{1,2,7,13,24,30\}$
each of these arcs has no points of index zero so they are complete.
Now we know that $(\mathrm{K}, 6)$-arc in PG $(2,5)$ which represented as whole plane is also maximal arc. So we can construct the complete (K, n)-arc from the whole plane and some maximal $(6,2)$-arcs as follows:-

6.1-Construction of Complete ($k, 5$)-Arcs in PG(2,5) from Maximal Arcs

The complete (k,5) - arcs can be constructed by eliminating some of maximal (K, 2) - arc as follows:

From the maximal whole plane $\mathrm{W}=\{1,2,3, \ldots, 31\}$, and C_{1}
let $\mathrm{H}_{1}=$ W- $_{1=}=\{3,4,5,6,8,9,10,11,12,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31\}$, we notice that there are some line meet H_{1} in six points, hence $(\mathrm{K}, 5)$ is note complete, so we eliminate some point from H_{1} to determine a complete (K,5)-arc as follows :

$$
\begin{aligned}
& \mathrm{H}_{1}^{*}=\left(\mathrm{W}-\mathrm{C}_{1}\right) /\{4,23\}= \\
& \{3,5,6,8,9,10,11,12,15,16,17,18,19,21,22,24,25,26,27,28,29,30,31\} .
\end{aligned}
$$

We notice that $\mathrm{H}_{1}{ }^{*}$ is incomplete $(\mathrm{k}, 5)-\operatorname{arc}$, since the point $\{20\}$ is of index zero, therfore we add this point to $\mathrm{H}_{1}{ }^{*}, \mathrm{H}_{1}{ }^{*}$ become complete ($\mathrm{K}, 5$) - arc.

$$
\text { Let } \mathrm{H}_{2}=\mathrm{W}-\mathrm{C}_{2}
$$

$=\{3,4,5,6,8,9,10,11,12,14,15,16,17,18,19,20,22,24,25,26,27,28,29,30,31\}$, we notice that there are some line meet H_{2} in six point hence H_{2} is not complete. So we eliminate some points from H_{2} to determine a complete $(\mathrm{K}, 5)$ - arc as follows :
Let $\mathrm{H}_{2}{ }^{*}=\left(\mathrm{W}-\mathrm{C}_{2}\right) /\{12,17,27\}=\{3,4,5,6,8,9,10,11,14,15,16,18,19,20,22,24,25,26,28,29,30,31\}$,and $\mathrm{H}_{2}{ }^{*}$ is a complete ($\mathrm{K}, 5$)-arc since the set of index zero $=0$.

Let $\mathrm{H}_{3}=\mathrm{W}-\mathrm{C}_{3}=\{3,4,5,6,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,25,26,27,28,29,31\}$, we notice that there some lines meet H_{3} six points , hence H_{3} is not complete. So we eliminate some points from H_{3} to determine a complete($\mathrm{K}, 5$)-arc, as follows:
Let $\mathrm{H}_{3}{ }^{*}=\left(\mathrm{W}-\mathrm{C}_{3}\right) /\{10,12,27,28\}=\{3,4,5,6,8,9,11,14,15,16,17,18,19,20,21,22,23,25,26,29,31\}$ and $\mathrm{H}_{3}{ }^{*}$ is incomplete since the point $\{1\}$ is of index zero, and we add this point to $\mathrm{H}_{3}{ }^{*}$, $\mathrm{H}_{3}{ }^{*}=\{1,3,4,5,6,8,9,11,14,15,16,17,18,19,20,21,22,23,25,26,29,31\}$, then $\mathrm{H}_{3}{ }^{*}$ is complete $(22,5)-$ arc.

6.2 Construction of Complete ($k, 4$) - Arcs in PG (2, 5):

The complete (K, 4)-arc constructed by intersecting two complete (K, 5) arcs as follows: $\mathrm{I}_{1}=\mathrm{H}_{1}{ }^{*} \cap \mathrm{H}_{2}{ }^{*}=\{3,5,6,10,11,15,16,18,19,20,22,24,25,26,27,28,29,30,31\}$ is incomplete (K,4)-arc since there are some line meet the arc in five points so we eliminate some points from the arc to determine a complete ($\mathrm{K}, 4$) - arc as follows:
$\mathrm{I}_{1}{ }^{*}=\mathrm{H}_{1}{ }^{*} \cap \mathrm{H}_{2}{ }^{*}-\{5,6,30\}=\{3,10,11,15,16,18,19,20,22,24,25,26,27,28,29,31\}$, we notice that this arc is a complete $(16,4)$-arc .
$\mathrm{I}_{2}=\mathrm{H}_{1}{ }^{*} \cap \mathrm{H}_{3}{ }^{*}=\{3,5,6,8,9,11,15,16,17,18,19,21,22,25,26,29,31\}$ is incomplete $(\mathrm{K}, 4)$-arc since there are some line meet I_{2} in five points, so we eliminate some points from it to determine a complete (K, 4) - arc as follows
$\mathrm{I}_{2}{ }^{*}=\mathrm{H}_{1}{ }^{*} \cap \mathrm{H}_{3}{ }^{*}-\{5,6,11,22\}=\{3,8,9,15,16,17,18,19,21,25,26,29,31\}$ we notice that this arc incomplete since $\mathrm{C}_{0} \neq 0, \mathrm{C}_{0}=\{14\}$, and we add $\{14\}$ to $\mathrm{I}_{2}{ }^{*}$ to be complete
$\mathrm{I}_{2}{ }^{*}=\{3,8,9,14,15,16,17,18,19,21,25,26,29,31\}$.
$\mathrm{I}_{3}=\mathrm{H}_{2}{ }^{*} \cap \mathrm{H}_{3}{ }^{*}=\{3,4,5,6,8,9,11,14,15,16,18,19,20,22,25,26,29,31\}$ it is incomplete (K, 4) $-\operatorname{arc}$
since there are some line meet I_{3} in five points so we eliminate some points from it to determine a complete (K, 4)-arc as follows :
$\mathrm{I}_{3}{ }^{*}=\mathrm{H}_{2}{ }^{*} \cap \mathrm{H}_{3}{ }^{*}-\{4,5,6,8\}=\{3,9,11,14,15,16,18,19,20,22,25,26,29,31\}$ we notice that this arc is incomplete since $\mathrm{C}_{0} \neq 0, \mathrm{C}_{0}=\{1,12,17,23,30\}$, and we add $\{1,30\}$ to $\mathrm{I}_{3}{ }^{*}, \mathrm{I}_{3}{ }^{*}$ become complete, $\mathrm{I}_{3}{ }^{*}=\{1,3,9,11,14,15,16,18,19,20,22,25,26,29,30,31\}$

6.3- Construction of Complete (K, 3) - Arcs in PG(2,5) :-

The complete (K, 3) -arc constructed by intersecting two complete ($k, 4$) - arcs as follows: $\mathrm{J}_{1}=\mathrm{I}_{1}{ }^{*} \cap \mathrm{I}_{2}{ }^{*}=\{3,15,16,18,19,25,26,29,31\}$, is incomplete $(\mathrm{K}, 3)$-arc since there are some lines meet this arc in four points so we eliminate some points from it to determine a complete ($\mathrm{K}, 3$)are as follows :
$\mathrm{J}_{1}{ }^{*}=\mathrm{I}_{1}{ }^{*} \cap \mathrm{I}_{2}{ }^{*}-\{3,15\}=\{16,18,19,25,26,29,31\}$, we notice that this arc is incomplete $(\mathrm{K}, 3)$-arc since $C_{0} \neq 0, C_{0}=\{6,8,10,12,14,17,20\}$.

We add $\{6,17\}$ to $\mathrm{J}_{1}{ }^{*}, \mathrm{~J}_{1}{ }^{*}$ become complete
$\mathrm{J}_{1}{ }^{*}=\{6,16,17,18,19,25,26,29,31\}$
$\mathrm{J}_{2}=\mathrm{I}_{1}{ }^{*} \cap \mathrm{I}_{3}{ }^{*}=\{3,11,15,16,18,19,20,22,25,26,29,31\}$ is incomplete $(\mathrm{K}, 3)-$ arc ,since there are some line meet this arc in four points, so we eliminate some points from it to determine a complete ($\mathrm{K}, 3$) - arc as follows :
$\mathrm{J}_{2}{ }^{*}=\mathrm{I}_{1}{ }^{*} \cap \mathrm{I}_{3}{ }^{*}-\{16,18,19\}=\{3,11,15,20,22,25,26,29,31\}$, we notice that this arc is incomplete $(\mathrm{K}$, 3) - arc since $\mathrm{C}_{0} \neq 0, \mathrm{C}_{0}=\{6,12,17\}$. We add $\{6,17\}$ to $\mathrm{J}_{3}{ }^{*}, \mathrm{~J}_{3}{ }^{*}$ become complete , $\mathrm{J}_{2}{ }^{*}=\{3,6,11,15,17,20,22,25,26,29,31\}$ is a complete $(11,3)-\operatorname{arc}$.
$J_{3}=I_{2}{ }^{*} \cap I_{3}{ }^{*}=\{3,9,14,15,16,18,19,25,26,29,31\}$ is incomplete ($K, 3$) arc since there are some line meet this arc in four points so we eliminate some points from it to determine a complete ($k, 3$) arc as follows :
$\mathrm{J}_{3}{ }^{*}=\mathrm{I}_{2}{ }^{*} \cap \mathrm{I}_{3}{ }^{*}\{18,19\}=\{3,9,14,15,16,25,26,29,31\}$, we notice that the arc is incomplete since $\mathrm{C}_{0} \neq$ $0, C_{0}=\{6,30\}$, and we add $\{6\}$ to $\mathrm{J}_{3}{ }^{*}, \mathrm{~J}_{3}{ }^{*}$ become complete $(10,3)$ - arc. $\mathrm{J}_{3}=\{3,6,9,14,15,16,25$, 26, 29, 31 \}.

REFERENCES

1- Ali,T. H.(2004)" Complete (k, n) -arc in the Projective Plane (2, 17) ". Thesis, University of Baghdad, Iraq.
2- Al-Jofy , R.A.S. (1999) " Complete Arcs in a projective plane over Galois Field": , M.Sc., Thesis, University of Baghdad Iraq.
3- Abdul - Hussein, M, A (1997) " Classification of (K , 4) - Arc in the projective plane of order Five", M, Sc, Thesis, University of Basrah, Iraq. 4- Ahmed, A, M, (1999), " Complete Arcs in the projective plane over GF(q)". Ibn AL-Haitham, Iraq.
5- Ban (2001)," The maximal (K, n) - arcs" University of Mosul, Iraq.
6- Hirscfled , T. W, (1997) " Projective Geometrics Over Finite Field " Oxford Press.

7- Mayssa G . M (2004) " Construction of (k, m) - arcs from (k, n)- arcs in the Projective Plane PG $(2,17)$ ", $m<n$. 8-Najim , A . I (2005) "Complete (k, n) - arcs in the Projective Plane $(2,13)$ ".
Thesis, University of Baghdad , Iraq.
9- Najim,A.I.(2011) "Complete (k, n) - arcs in the Projective Plane (2, 7) ".
Letter of acceptance No:199 Date: 12/4/2011, University of Diyala , Iraq.
10-Rashad (1999)" Complete arcs in a Projective Plane Over Galois Field", M .Sc.
Thesis, University of Baghdad, Iraq.
11-Sawsan, J. K, (2001)" Construction of (k, n) $-\operatorname{arcs}$ from (k, m)-arcs in PG (2, P), $2 \leq \mathrm{m}<\mathrm{n}$.

