http://garmian.edu.krd

https://doi.org/10.24271/garmian.128

On *Rad* – Supplemented Modules, Weak *Rad* – Supplemented Modules and Completely Weak *Rad* – Supplemented Modules

Adil Kadir Jabbar¹ and Bakhtyar Mahmood Rahim²

¹Department of Mathematics, College of Science, University of Sulaimani, Sulaimani, Iraq ²Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Iraq <u>1adilkj@gmail.com</u> or <u>adil.jabbar@univsul.edu.iq</u> <u>2bakhtyar1987@gmail.com</u>

Abstract

In this paper some results that concerning localization of modules are proved. It also, studies the effect of localization on certain types of modules such as Rad-supplemented modules, weak Rad-supplemented modules and completely weak Rad-supplemented modules. Several conditions are given under which certain properties of such types of algebraic structures are preserved under localization.

Keywords: Localization of modules, *Rad* –supplemented modules, weak

Rad –supplemented modules, completely weak *Rad* –supplemented modules and amply *Rad* –supplemented modules.

1 Introduction

Throughout this paper, R is a commutative ring with identity and M is a unitary left R –module. By $N \leq M$ we mean N is a submodule of M. A submodule V of M is called a small submodule of M, denoted by $V \ll M$, if $L \leq M$ is any submodule such that V + L = M, then L = M [12], and V is called a supplement (a weak supplement) of $U \leq M$ if M = U + V and $U \cap V \ll V$ ($U \cap V \ll M$) [8]. Moreover, M is called a supplemented (a weak supplemented) module if every submodule of M has a supplement (a weak supplement) in M [4]. M is called an amply supplemented R – module if for any submodules U and V of M with M = U + V there exists a submodule K of U such that $K \leq V$ [4], and M is called an amply weak supplemented R – module if every submodule of M has amply supplement in M [8] and V is called a Rad – supplement or a generalized supplement (a weak Rad –supplement or a generalized weak supplement) of U in M if M = U + V and $U \cap V \leq RadV$ ($U \cap V \leq RadM$) [9]. Moreover, M is called *Rad* – supplemented or a generalized supplemented a (a weakly *Rad* – supplemented or a generalized weakly supplemented) module if every submodule of M has a Rad – supplement or a generalized supplement (a weak Rad – supplement or a generalized weak supplement) in M [11]. M is called completely weak Rad – supplemented if every submodule of M is weakly *Rad* –supplemented [9] and it is called amply *Rad* –supplemented (or generalized amply supplemented) in case M = U + V implies that U has a Rad – supplement (or has a generalized supplement) in V [13]. If $r \in R$, then we define $N:r = \{x \in M ; rx \in N\}$ [1]. A submodule $K \leq M$ is called a radical submodule if Rad(K) = K. M is called a hollow module if every proper submodule of M is small in M [13], and by a hollow radical submodule is meant a submodule which is both hollow and radical. M is called a semi-simple if every submodule of M is a direct summand [5]. For a submodule K of M we define $S_M(K) = \{r \in R: rx \in K,$ for some $x \notin K\}$ [2]. A non-empty subset S of R is called a multiplicative system in R, if $0 \notin S$ and $a, b \in S$ implies $ab \in S$ [6]. If S is a multiplicative system in R, then one can obtain an R_S -module, denoted by M_S , under the module operations $\frac{x}{s} + \frac{y}{t} = \frac{tx + sy}{st}$ and $\frac{r}{u} \cdot \frac{x}{s} = \frac{rx}{us}$, for $\frac{r}{u} \in R_S$ and $\frac{x}{s}, \frac{y}{t} \in M_S$, so that when we say M_S is a module we mean M_S is an R_S -module. In fact, this module M_S is known as the localization of M at the multiplicative system S [1].

2. Some Basic Preliminaries

The following are some known results on which we depend to prove the main results of this paper.

Corollary 2.1. [3] Let M be an R – module and P a prime ideal of R. For submodules N, L of M the following are satisfied.

- (1) $(M/N)_p \cong M_p/N_p$.
- $(2) (N+L)_p \cong N_p + L_p.$
- $(3) (N \cap L)_p \cong N_p \cap L_p.$

Proposition 2.2. [7] Let *L* and *N* be submodules of an *R*-module *M*. Then $L \subseteq N$ if and only if $L_P \subseteq N_P$ for every maximal ideal *P* of *R*.

Corollary 2.3. **[7]** Let *L* and *N* be submodules of an *R*-module *M*. Then L = N if and only if $L_P = N_P$, for every maximal ideal *P* of *R*. In particular, N = M if and only if $N_P = M_P$, for every maximal ideal *P* of *R*.

Lemma 2.4. [11] Let M be an R -module and V a Rad -supplement submodule of U in M. If $U \cap V$ is a supplement submodule in U, then V is supplement submodule in M.

3. Main Results

First, we give an example of an R -module M in which there is a prime ideal P of R and for which $S(K) \ge P$, for all proper submodules K of M.

Example. Consider Z_8 as a Z -module, that is take R = Z and $M = Z_8$. Clearly $P = \langle 2 \rangle$ is a prime ideal of Z. The only proper submodules of Z_8 are $\{0\}, \{0,4\}, \{0,2,4,6\}$. Now, one can easily calculate $S(\{0\}), S(\{0,4\})$ and $S(\{0,2,4,6\})$ and get that

 $S(\{0\}) = <2> = P \subseteq P.$

$S(\{0,4\}) = <4 > \subseteq P.$

 $S(\{0, 2, 4, 6\}) = <8>\subseteq P$

Hence, Z_8 is a Z-module, where P = <2 > is a prime ideal of Z and such that $S(K) \subseteq P$ for all submodules K of Z_8 .

Now, we prove the first result.

Lemma 3.1. Let M be an R -module with submodules U and V of M and P be any maximal ideal of R such that for each proper submodule K of M, we have $S(K) \subseteq P$. If V_P is a weak Rad-supplement submodule of U_P in M_P , then for a submodule L' of U_P , there exists a submodule L of U such that $\frac{V+L}{L}$ is a weak Rad-supplement submodule of $\frac{V+L}{L}$ is a weak Rad-supplement submodule of $\frac{V}{L}$ in $\frac{M}{L}$.

Proof. As V_P is a weak Rad – supplement submodule of U_P in M_P , we have $U_P + V_P = M_P$ and $U_P \cap V_P \leq Rad(M_P)$, this implies that $(U + V)_P = M_P$ and $(U \cap V)_P \leq Rad(M_P)$. By using [1, Corollary 3.26], we have $(U \cap V)_P \leq (RadM)_P$, so by Corollary 2.3 and Proposition 2.2, we get U + V = M and $U \cap V \leq RadM$, so that V is a weak Rad – supplement submodule of U in M. Now, since $L' \leq U_P$, so by [1, Lemma 3.16], there exists a submodule $L \leq U$ such that $L' = L_P$. Thus by [9, Lemma 2.1], we get $\frac{V+L}{L}$ is a weak Rad –supplement submodule of $\frac{U}{L}$ in $\frac{M}{L}$.

In **[9, Proposition II.1]**, it is proved that every factor module of completely weak *Rad*—supplemented module is also a completely weak *Rad*—supplemented module. Now, we prove this result by replacing the module with its localization at maximal ideals.

Proposition 3.2. Let *M* be an *R* –module with a submodule *L* of *M* and *P* be any maximal ideal of *R* such that for each proper submodule *K* of *M* we have $S(K) \subseteq P$. If M_P is a completely weak *Rad* –supplemented R_P –module, then $\frac{M}{L}$ is a completely weak *Rad* –supplemented *R* –module.

Proof. Let $\frac{K}{L}$ be a submodule of $\frac{M}{L}$, where $L \le K \le M$. Then, $\frac{K_P}{L_P}$ is a submodule of $\frac{M_P}{L_P}$, where $L_P \le K_P \le M_P$. Let $\frac{U_P}{L_P}$ be a submodule of $\frac{K_P}{L_P}$, where $L_P \le U_P \le K_P$. Since M_P is a completely weak Rad –supplemented R_P –module, there exists a submodule V_P of K_P for which $U_P + V_P = K_P$ and $U_P \cap V_P \le Rad(K_P)$. As V_P is a weak Rad –supplement of U_P in K_P and $L_P \le U_P$, so by Lemma 3.1, we get that $\frac{V+L}{L}$ is a weak Rad – supplement of $\frac{U}{L}$ in $\frac{K}{L}$. Hence $\frac{K}{L}$ is a weakly Rad –supplemented module. So that, $\frac{M}{L}$ is a completely weak Rad –supplemented Rad –supp

In the next result, we prove that, if the localization of a module at a maximal ideal is completely weak Rad –supplemented, then the module itself is so.

Proposition 3.3. Let M be an R -module and P be any prime ideal of R such that for each proper submodule K of M, we have $S(K) \subseteq P$. If M_P is a completely weak Rad - supplemented R_P - module, then M is also a completely weak Rad -supplemented R -module.

Proof. Let W be any submodule of R –module M and K be any submodule of W. Then, by Proposition 2.2, W_P is a submodule of M_P and K_P is a submodule of W_P . Since M_P is completely weak Rad – supplemented, then, W_P is weak Rad – supplemented, therefore, $K_{\rm P}$ has a weak Rad – supplemented in $M_{\rm P}$. This implies that, there exists a submodule U' of W_P such that $U' + K_P = W_P$ and $U' \cap K_P \leq Rad(W_P)$. By [1, Lemma 3.16], there exists a submodule U of W such $U_p + K_p = (U + K)_p = W_p$ $U' = U_{P}$ is. that That and $U_P \cap K_P = (U \cap K)_P \leq Rad(W_P)$ by Corollary 2.1. By [1, Corollary 3.26] and **Proposition 2.3**, we obtain U + K = W and $U \cap K \leq Rad(W)$. Hence K has a weak Rad – supplement in W. This implies that, M is a completely weak *Rad* – supplemented module.

Now, we give the following corollary to the **Proposition 3.3**.

Corollary 3.4. Let M be an R -module and P a maximal ideal of R such that for each proper submodule K of M we have $S(K) \subseteq P$. Let $M = N \oplus L$, where N, L are submodules of M. If M_P is a completely weak Rad -supplemented R_P -module, then N and L is also a completely weak Rad -supplemented R -module.

Proof. The proof follows directly by **Proposition 3.3** and **[9, Proposition 2.2].**

Now, we give a condition under which, we can extend the result of [10, Lemma 3], to the localized modules.

Lemma 3.5. Let M be an R -module and P a maximal ideal of R such that for each proper submodule K of M, we have $S(K) \subseteq P$. Let M = U + V for submodules U and V of M. If V_P contains a Rad -supplement submodule of U_P in M_P , then $U \cap V$ has a Rad -supplement submodule in V.

Proof. Let *K* be a submodule of *V*, and suppose that a submodule K_P of V_P is a Rad – supplement of U_P in M_P , then we have $U_P + K_P = M_P$ and $U_P \cap K_P \leq (Rad K_P)$, from the modular law, we have $U_P \cap V_P + K_P = V_P$, since $K_P \leq V_P$, then $(U_P \cap V_P) \cap K_P = U_P \cap K_P \leq (Rad K_P)$, by **Corollary 2.1**, we get $((U \cap V) + K)_P = V_P$ and $((U \cap V) \cap K)_P \leq (Rad K_P)$ and by [1, **Corollary 3.26**], we have $Rad(K_P) = (Rad K)_P$, hence by **Corollary 2.3** and **Proposition 2.2**, we get that $(U \cap V) + K = V$ and $(U \cap V) \cap K \leq Rad K$. Thus *K* is a *Rad* –supplement submodule of $(U \cap V)$ in *V*.

Now, we give a condition under which we can extend the result of **[11, Lemma 4]**, to the localized modules.

Corollary 3.6. Let M be an R -module and V a Rad -supplement submodule of U in M, let P be any maximal ideal of R such that for each proper submodule K of M,

we have $S(K) \subseteq P$. If $(U \cap V)_P$ is a supplement submodule in U_P , then V is supplement submodule of some submodule in M.

Proof. Let *K* be a submodule of *U* and $(U \cap V)_P$ is a supplement submodule of K_P in U_P . Then we have $K_P + (U \cap V)_P = U_P$ and $K_P \cap (U \cap V)_P \ll (U \cap V)_P$, then by **Corollary 2.1**, we get $(K + (U \cap V))_P = U_P$ and $(K \cap (U \cap V))_P \ll (U \cap V)_P$, hence by **Corollary 2.3** and **[1, Corollary 3.26]**, we get $K + (U \cap V) = U$ and $K \cap (U \cap V) \ll (U \cap V)$, it follows that $(U \cap V)$ is supplement submodule of *K* in *U*. Thus by **Lemma 2.4**, we get that *V* is supplement submodule of some submodule of *M*.

In [11, Proposition 6], it is proved that, if every Rad –supplement submodule of a module is Rad – supplemented module, then the module itself is a supplemented module and now we extend this fact to the localized module.

Proposition 3.7. Let M be a reduced module and P a maximal ideal of R such that for each proper submodule K of M, we have $S(K) \subseteq P$. If every Rad –supplement submodule of M_P is Rad –supplemented, then M is a supplemented module.

Proof. Let U and V be submodules of M and V_P a Rad -supplemented submodule of U_P in M_P . Then we have $U_P + V_P = M_P$ and $U_P \cap V_P \leq RadV_P$, since M is a reduced R - module, then by [1, Corollary 3.26], we get M_P is a reduced R_P -module, and we have V_P is a Rad -supplemented, then by [11, Proposition 5], we get $RadV_P \ll V_P$, hence $U_P + V_P = M_P$ and $U_P \cap V_P \leq RadV_P \ll V_P$, then by Corollary 2.1, we get $(U + V)_P = M_P$ and $(U \cap V)_P \ll V_P$, hence by Corollary 2.3 and [1, Corollary 3.26], we get U + V = M and $U \cap V \ll V$, it follows that V is a supplement submodule of U in M. Thus M is supplement R -module.

In the following result, we prove that if a module is a sum of two of its submodules for which the localization of one of them is supplemented, then the submodule contains a supplement of the other submodule.

Corollary 3.8. Let M be an R -module with submodules U and V of M, and let P be any maximal ideal of R such that for each proper submodule K of M, we have $S(K) \subseteq P$, suppose that M = U + V. If V_P is a supplemented R_P -module, then V contains a supplement submodule of U in M.

Proof. Let L be a submodule of V and let L_P be a supplement of $U_P \cap V_P$ in V_P . Then, we have $L_P + (U_P \cap V_P) = V_P$ and $L_P \cap (U_P \cap V_P) \ll L_P$, where $U_p \cap L_p = L_p \cap (U_p \cap V_p) \ll L_p$, hence by **Corollary 2.1**, we get $(L + (U + V))_P = V_P$ and $(U \cap L)_P = (L \cap (U \cap V))_P \ll V_P$ and by Corollary 2.3 get that $L + (U \cap V) = V$ [1. Corollary 3.26]. we and and $U \cap L = L \cap (U \cap V) \ll L$, this means that L is a supplement of $(U \cap V)$ in V. Now, $M = U + V = U + (U \cap V) + L = U + L$, hence we get M = U + L and $U \cap L \ll L$, it follows that L is a supplement of U in M. Thus V contains a supplement of U in M.

In [10, proposition 5], it is proved that if a module is amply Rad—supplemented, then it is a hollow radical module. Now, we give a condition under which, we can extend this result to the localized module.

Proposition 3.9. Let *R* be a Noetherian ring and *M* be a simply radical *R* –module. Let *P* be a maximal ideal of *R* such that for each proper submodule *K* of *M*, we have $S(K) \subseteq P$. If M_P is an amply *Rad* –supplemented R_P –module, then *M* is hollow radical *R* –module.

Proof. Let U be a submodule of M and suppose that $U_P + V' = M_P$ for a submodule V' of M_P , by [1, Lemma 3.16], there exists a submodule $V \leq M$ such that $V' = V_p$, hence we get $U_p + V_p = M_p$. By hypothesis there exists a submodule L' of V_P such that $U_P + L' = M_P$ and $U_P \cap L' \leq Rad(L')$, again by [1, Lemma 3.16], there exists a submodule $L \leq V$ such that $L' = L_P$, hence $U_P + L_P = M_P$ and by Corollary 2.1, $(U+L)_p = M_p$ $U_p \cap L_p \leq Rad(L_p)$. and $(U \cap L)_P \leq Rad(L_P)$ and by [1, Corollary 3.26], we have $Rad(L_P) = (RadL)_P$, hence by Corollary 2.3 and Proposition 2.2, we get that M = U + L and $U \cap L \leq Rad(L)$, and since M is simply radical, it follows that $Rad(L) = L \cap Rad(M) = L \cap M = L$, so L is a radical submodule, therefore L = M and so V = M. Hence, we deduce that U is a small submodule in M. Hence, *M* is a hollow radical R –module.

Next, we prove that if every submodule of a localized module is *Rad*—supplemented, then the module itself is amply *Rad*—supplemented.

Proposition 3.10. Let M be an R -module and P a maximal ideal of R such that for each proper submodule K of M, we have $S(K) \subseteq P$. If every submodule of M_P is a *Rad*-supplemented R_P -module, then M is an amply *Rad*-supplemented R-module.

Proof. Let *N* be a submodule of *M* and $L' \leq M_p$. Then $N_p \leq M_p$ and by [1, Lemma 3.16], there exists a submodule *L* of *M* such that $L' = L_p$, suppose that $M_p = N_p + L_p$, by assumption there exists a submodule *H'* of L_p such that $(N_p \cap L_p) + H' = L_p$ and $(N_p \cap L_p) \cap H' = N_p \cap H' \leq \text{Rad}H'$, again by [1, Lemma 3.16], there exists a submodule $H \leq L$ such that $H' = H_p$, hence $(N_p \cap L_p) + H_p = L_p$ and $(N_p \cap L_p) \cap H_p = N_p \cap H_p \leq \text{Rad}(H_p)$. Thus, $L_p = H_p + (N_p \cap L_p) \leq N_p + H_p$ and hence $M_p = N_p + L_p \leq N_p + H_p$. Therefore, $M_p = N_p + H_p$ and $N_p \cap H_p \leq \text{Rad}(H_p)$, by [1, Corollary 3.26], we have $\text{Rad}(H_p) = (\text{Rad}H)_p$, hence by Corollary 2.1, we get $M_p = (N + H)_p$ and $(N \cap H)_p \leq (\text{Rad}H)_p$ and by Corollary 2.3 and Proposition 2.2, we get M = N + H and $N \cap H = \text{Rad}H$. Hence *N* has a Rad – supplement $H \leq L$. Thus *M* is an amply Rad – supplemented module.

In [13, Proposition 2.5], it is proved that if a module is a sum of two Rad-supplemented submodules, then the module itself is Rad-supplemented. Now, we extend this result to the localized module.

Corollary 3.11. Let N and L be Rad – supplemented R – modules and P a maximal ideal of R such that for each proper submodule K of M, we have $S(K) \subseteq P$. If $M_P = N_P + L_P$, then M is a Rad – supplemented R – module.

Proof. Since, $M_P = N_P + L_P$, then by **Corollary 2.1**, we have $M_P = (N + L)_P$ and also by **Corollary 2.3**, we get M = N + L. Hence by [13, Proposition 2.5], we get that M is a *Rad* –supplemented module.

In [13, Proposition 2.1], it is proved that a *Rad* –supplemented module which has zero Jacobson radical is semi simple. Now, we prove this result for the localized module.

Corollary 3.12. Let *M* be a *Rad* – supplemented *R* – module with a submodule *L* of *M* and *P* a prime ideal of *R* such that for each proper submodule *K* of *M* we have $S(K) \subseteq P$. If $L_P \cap RadM_P = 0$, then *L* is semi-simple.

Proof. Since $L_P \cap RadM_P = 0$ and by [1, Corollary 3.26], we have $Rad(M_P) = (RadM)_P$, then by Corollary 2.1, we get $(L \cap RadM)_P = 0$ and by [7, Corollary 2.3], we get $L \cap RadM = 0$, hence by [13, Proposition 2.1], we get that L is semi simple.

In [13, Proposition 3.2], it is proved that every supplement submodule of a weak Rad – supplemented module is also weak Rad – supplemented. Now, we prove this result for the localized module.

Proposition 3.13. Let M be an R -module and P a maximal ideal of R such that for each proper submodule K of M, we have $S(K) \subseteq P$. If M_P is a weak *Rad*-supplemented R-module, then every supplement submodule of M is weak *Rad*-supplemented R-module.

Proof. Let K be a supplement submodule of M. For any submodule $N \leq K$, since M_P is a weak Rad-supplemented module, then there exists $L' \leq M_P$ such that $M_P = N_P + L'$ and $N_P \cap L' \leq RadM_P$, by [1, Lemma 3.16], there exists a submodule $L \leq M$ such that $L' = L_P$, hence we get $M_P = N_P + L_P$ and $N_P \cap L_P \leq Rad(M_P)$. Thus,

 $K_{p} = K_{p} \cap M_{p} = K_{p} \cap (N_{p} + L_{p}) = N_{p} + (K_{p} \cap L_{p})$

 $N_p \cap (K_p \cap L_p) = K_p \cap (N_p \cap L_p) \le K_p \cap Rad(M_p) = Rad(K_p)$ by [13, Lemma 1.1]. Hence, $N_p + (K_p \cap L_p) = K_p$ and $N_p \cap (K_p \cap L_p) \le Rad(K_p)$, by [1, Corollary 3.26], we have $Rad(K_p) = (RadK)_p$, hence by Corollary 2.1, we get $(N + (K \cap L))_p = K_p$ and $(N \cap (K \cap L))_p \le (RadK)_p$, hence by Corollary 2.3, and Proposition 2.2, we get that $N + (K \cap L) = K$ and $N \cap (K \cap L) \le RadK$. Therefore, we get that K is a weak Rad -supplemented R -module.

Next, we prove that, if the sum of the localization of two submodules of a module has a Rad – supplement submodule and if one of the submodules is Rad – supplemented, then the other submodule has a Rad – supplement submodule.

and

Proposition 3.14. Let M be an R -module with submodules $U, V \leq M$, let U be a Rad-supplemented module and P a maximal ideal of R such that for each proper submodule K of M we have $S(K) \subseteq P$. If $U_P + V_P$ has a Rad-supplement submodule in M_P , then V has a Rad-supplement submodule in M.

Proof. Let L be a submodule of V. Since, $U_{P} + V_{P}$ has a Rad – supplement in M_{P} , suppose that L_p is a Rad – supplement of $U_p + V_p$, hence we get $L_{p} + (U_{p} + V_{p}) = M_{p}$ and $L_{p} \cap (U_{p} + V_{p}) \leq Rad(L_{p})$, by [1, Corollary 3.26], we have $Rad(L_p) = (RadL)_p$, hence by Corollary 2.1, we get $(L + (U + V))_P = M_P$ and $(L \cap (U + V))_P \leq (RadL)_P$, and by Corollary 2.3 and **Proposition 2.2.** we get that L + (U + V) = M and $L \cap (U + V) \leq Rad(L)$. For $(L+V) \cap U$, since U is a Rad – supplemented module, there exists $K \leq U$ such that $(L+V) \cap U + K = U$ and $(L+V) \cap K \leq RadK$. Thus we have L + V + K = M and $(L + V) \cap K \leq RadK$, that is K is a Rad – supplement of L+V in M. It is clear that (L+K)+V=M, since $K+V \leq U+V$, $L \cap (K+V) \le L \cap (U+V) \le RadL$ we get that $(L+K) \cap V \le L \cap (K+V) + K \cap (L+V) \le RadL + RadK \le Rad(L+K)$ Hence we get (L+K) + V = M and $(L+K) \cap V \leq Rad(L+K)$, that means L + K is a Rad – supplemented submodule of V in M. Thus V has a *Rad* – supplement submodule in M.

Reference

[1] Akray, I., Jabbar, A. K. and Sazeedeh, R.: Some Conditions Under Which Certain Types of Modules Possess Localization Property, Journal Duhok university, 15(1), 2012, 144-152.

[2] Atani, S. E. and Darani, A. Y. : Notes on the Primal Submodules, Chiang Mai J. Sci., 35(3), (2008), 399-410.

[3] Atiiyah, M. F. and Macdonald, I. G.: Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.

[4] Bilhan. G.: Amply FWS modules, Journal of Arts and Sciences, Sayi : 4, Aralik 2005.

[5] Clark, J., Lomp, C., Vajana, N. and Wisbauer R.:. Lifting Modules. Birkhauser Verlag Basel, Boston-berlin, 2006.

[6] Jabbar, A. K. and Hassan, N. H. : On Locally Multiplication Modules, International Mathematical Forum, 11(5), 2016, 213-226.

[7] Jabbar, A. K.: A Generalization of Prime and Weakly Prime submodules, Pure Mathematical sciences, 2(1), 2013, 1-11.

[8] Nebiev, C.: Amply weak supplemented modules, International Journal Computational Cogintion, 3(1), 2005, 88-90.

[9] NISANCI, B., TURKMEN, E. and PANCAR, A.: Completely Weak Radsupplemented Modules, International Journal of Computational Cognition, 7(2), 2009.

[10] Turkmen, E. and Pancar, A.: Characterizations of Rad-supplemented modules, Miskolc Mathematical Notes, 13(2), 2012, 569 – 580.

[11] Turkmen, E. and Pancar, A.: Some properties of Rad-supplemented modules, International Journal of the Physical Sciences, 6(35), 2011, 7904 – 7909.

[12] Turkmen, E. and Pancer, A.: On Radical Supplemented Modules, International Journal of Computational Cognition, 7(1), 2009.

[13] Wang, Y. and Ding, N.: Generalized Supplemented Modules, Taiwanese Journal of Mathematics, 10(6), 1589-1601, 2006.